• Title/Summary/Keyword: 트리 마이닝

Search Result 129, Processing Time 0.026 seconds

Location Generalization Method of Moving Object using $R^*$-Tree and Grid ($R^*$-Tree와 Grid를 이용한 이동 객체의 위치 일반화 기법)

  • Ko, Hyun;Kim, Kwang-Jong;Lee, Yon-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.231-242
    • /
    • 2007
  • The existing pattern mining methods[1,2,3,4,5,6,11,12,13] do not use location generalization method on the set of location history data of moving object, but even so they simply do extract only frequent patterns which have no spatio-temporal constraint in moving patterns on specific space. Therefore, it is difficult for those methods to apply to frequent pattern mining which has spatio-temporal constraint such as optimal moving or scheduling paths among the specific points. And also, those methods are required more large memory space due to using pattern tree on memory for reducing repeated scan database. Therefore, more effective pattern mining technique is required for solving these problems. In this paper, in order to develop more effective pattern mining technique, we propose new location generalization method that converts data of detailed level into meaningful spatial information for reducing the processing time for pattern mining of a massive history data set of moving object and space saving. The proposed method can lead the efficient spatial moving pattern mining of moving object using by creating moving sequences through generalizing the location attributes of moving object into 2D spatial area based on $R^*$-Tree and Area Grid Hash Table(AGHT) in preprocessing stage of pattern mining.

  • PDF

Using Text-mining Method to Identify Research Trends of Freshwater Exotic Species in Korea (텍스트마이닝 (text-mining) 기법을 이용한 국내 담수외래종 연구동향 파악)

  • Do, Yuno;Ko, Eui-Jeong;Kim, Young-Min;Kim, Hyo-Gyeom;Joo, Gea-Jae;Kim, Ji Yoon;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.195-202
    • /
    • 2015
  • We identified research trends for freshwater exotic species in South Korea using text mining methods in conjunction with bibliometric analysis. We searched scientific and common names of freshwater exotic species as searching keywords including 1 mammal species, 3 amphibian-reptile species, 11 fish species, 2 aquatic plant species. A total of 245 articles including research articles and abstracts of conference proceedings published by 56 academic societies and institutes were collected from scientific article databases. The search keywords used were the common names for the exotic species. The $20^{th}$ century (1900's) saw the number of articles increase; however, during the early $21^{st}$ century (2000's) the number of published articles decreased slowly. The number of articles focusing on physiological and embryological research was significantly greater than taxonomic and ecological studies. Rainbow trout and Nile tilapia were the main research topic, specifically physiological and embryological research associated with the aquaculture of these species. Ecological studies were only conducted on the distribution and effect of large-mouth bass and nutria. The ecological risk associated with freshwater exotic species has been expressed yet the scientific information might be insufficient to remove doubt about ecological issues as expressed by interested by individuals and policy makers due to bias in research topics with respect to freshwater exotic species. The research topics of freshwater exotic species would have to diversify to effectively manage freshwater exotic species.

Assessment of Public Awareness on Invasive Alien Species of Freshwater Ecosystem Using Conservation Culturomics (보전문화체학 접근방식을 통한 생태계교란 생물인 담수 외래종의 대중인식 평가)

  • Park, Woong-Bae;Do, Yuno
    • Journal of Wetlands Research
    • /
    • v.23 no.4
    • /
    • pp.364-371
    • /
    • 2021
  • Public awareness of alien species can vary by generation, period, or specific events associated with these species. An understanding of public awareness is important for the management of alien species because differences in public awareness can affect the establishment and implementation of management plans. We analyzed digital texts on social media platforms, news articles, and internet search volumes used in conservation culturomics to understand public interest and sentiment regarding alien freshwater species. The number of tweets, number of news articles, and relative search volume to 11 freshwater alien species were extracted to determine public interest. Additionally, the trend over time, seasonal variability, and repetition period of these data were confirmed. We also calculated the sentiment score and analyzed public sentiment in the collected data using sentiment analysis based on text mining techniques. The American bullfrog, nutria, bluegill, and largemouth bass drew relatively more public interest than other species. Some species showed repeated patterns in the number of Twitter posts, media coverage, and internet searches found according to the specified periods. The text mining analysis results showed negative sentiments from most people regarding alien freshwater species. Particularly, negative sentiments increased over the years after alien species were designated as ecologically disturbing species.

Automated Development of Rank-Based Concept Hierarchical Structures using Wikipedia Links (위키피디아 링크를 이용한 랭크 기반 개념 계층구조의 자동 구축)

  • Lee, Ga-hee;Kim, Han-joon
    • The Journal of Society for e-Business Studies
    • /
    • v.20 no.4
    • /
    • pp.61-76
    • /
    • 2015
  • In general, we have utilized the hierarchical concept tree as a crucial data structure for indexing huge amount of textual data. This paper proposes a generality rank-based method that can automatically develop hierarchical concept structures with the Wikipedia data. The goal of the method is to regard each of Wikipedia articles as a concept and to generate hierarchical relationships among concepts. In order to estimate the generality of concepts, we have devised a special ranking function that mainly uses the number of hyperlinks among Wikipedia articles. The ranking function is effectively used for computing the probabilistic subsumption among concepts, which allows to generate relatively more stable hierarchical structures. Eventually, a set of concept pairs with hierarchical relationship is visualized as a DAG (directed acyclic graph). Through the empirical analysis using the concept hierarchy of Open Directory Project, we proved that the proposed method outperforms a representative baseline method and it can automatically extract concept hierarchies with high accuracy.

A Context Recognition System for Various Food Intake using Mobile and Wearable Sensor Data (모바일 및 웨어러블 센서 데이터를 이용한 다양한 식사상황 인식 시스템)

  • Kim, Kee-Hoon;Cho, Sung-Bae
    • Journal of KIISE
    • /
    • v.43 no.5
    • /
    • pp.531-540
    • /
    • 2016
  • Development of various sensors attached to mobile and wearable devices has led to increasing recognition of current context-based service to the user. In this study, we proposed a probabilistic model for recognizing user's food intake context, which can occur in a great variety of contexts. The model uses low-level sensor data from mobile and wrist-wearable devices that can be widely available in daily life. To cope with innate complexity and fuzziness in high-level activities like food intake, a context model represents the relevant contexts systematically based on 4 components of activity theory and 5 W's, and tree-structured Bayesian network recognizes the probabilistic state. To verify the proposed method, we collected 383 minutes of data from 4 people in a week and found that the proposed method outperforms the conventional machine learning methods in accuracy (93.21%). Also, we conducted a scenario-based test and investigated the effect contribution of individual components for recognition.

Tabu Search-Genetic Process Mining Algorithm for Discovering Stochastic Process Tree (확률적 프로세스 트리 생성을 위한 타부 검색 -유전자 프로세스 마이닝 알고리즘)

  • Joo, Woo-Min;Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.4
    • /
    • pp.183-193
    • /
    • 2019
  • Process mining is an analytical technique aimed at obtaining useful information about a process by extracting a process model from events log. However, most existing process models are deterministic because they do not include stochastic elements such as the occurrence probabilities or execution times of activities. Therefore, available information is limited, resulting in the limitations on analyzing and understanding the process. Furthermore, it is also important to develop an efficient methodology to discover the process model. Although genetic process mining algorithm is one of the methods that can handle data with noises, it has a limitation of large computation time when it is applied to data with large capacity. To resolve these issues, in this paper, we define a stochastic process tree and propose a tabu search-genetic process mining (TS-GPM) algorithm for a stochastic process tree. Specifically, we define a two-dimensional array as a chromosome to represent a stochastic process tree, fitness function, a procedure for generating stochastic process tree and a model trace as a string of activities generated from the process tree. Furthermore, by storing and comparing model traces with low fitness values in the tabu list, we can prevent duplicated searches for process trees with low fitness value being performed. In order to verify the performance of the proposed algorithm, we performed a numerical experiment by using two kinds of event log data used in the previous research. The results showed that the suggested TS-GPM algorithm outperformed the GPM algorithm in terms of fitness and computation time.

The Training Data Generation and a Technique of Phylogenetic Tree Generation using Decision Tree (트레이닝 데이터 생성과 의사 결정 트리를 이용한 계통수 생성 방법)

  • Chae, Deok-Jin;Sin, Ye-Ho;Cheon, Tae-Yeong;Go, Heung-Seon;Ryu, Geun-Ho;Hwang, Bu-Hyeon
    • The KIPS Transactions:PartD
    • /
    • v.10D no.6
    • /
    • pp.897-906
    • /
    • 2003
  • The traditional animal phylogenetic tree is to align the body structure of the animal phylums from simple to complex based on the initial development character. Currently, molecular systematics research based on the molecular, it is on the fly, is again estimating prior trend and show the new genealogy and interest of the evolution. In this paper, we generate the training set which is obtained from a DNA sequence ans apply to the classification. We made use of the mitochondrial DNA for the experiment, and then proved the accuracy using the MEGA program which is anaysis program, it is used in the biology field. Although the result of the mining has to proved through biological experiment, it can provede the methodology for the efficient classify and can reduce the time and effort to the experiment.

Terminology Recognition System based on Machine Learning for Scientific Document Analysis (과학 기술 문헌 분석을 위한 기계학습 기반 범용 전문용어 인식 시스템)

  • Choi, Yun-Soo;Song, Sa-Kwang;Chun, Hong-Woo;Jeong, Chang-Hoo;Choi, Sung-Pil
    • The KIPS Transactions:PartD
    • /
    • v.18D no.5
    • /
    • pp.329-338
    • /
    • 2011
  • Terminology recognition system which is a preceding research for text mining, information extraction, information retrieval, semantic web, and question-answering has been intensively studied in limited range of domains, especially in bio-medical domain. We propose a domain independent terminology recognition system based on machine learning method using dictionary, syntactic features, and Web search results, since the previous works revealed limitation on applying their approaches to general domain because their resources were domain specific. We achieved F-score 80.8 and 6.5% improvement after comparing the proposed approach with the related approach, C-value, which has been widely used and is based on local domain frequencies. In the second experiment with various combinations of unithood features, the method combined with NGD(Normalized Google Distance) showed the best performance of 81.8 on F-score. We applied three machine learning methods such as Logistic regression, C4.5, and SVMs, and got the best score from the decision tree method, C4.5.

Mining Search Keywords for Improving the Accuracy of Entity Search (엔터티 검색의 정확성을 높이기 위한 검색 키워드 마이닝)

  • Lee, Sun Ku;On, Byung-Won;Jung, Soo-Mok
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.9
    • /
    • pp.451-464
    • /
    • 2016
  • Nowadays, entity search such as Google Product Search and Yahoo Pipes has been in the spotlight. The entity search engines have been used to retrieve web pages relevant with a particular entity. However, if an entity (e.g., Chinatown movie) has various meanings (e.g., Chinatown movies, Chinatown restaurants, and Incheon Chinatown), then the accuracy of the search result will be decreased significantly. To address this problem, in this article, we propose a novel method that quantifies the importance of search queries and then offers the best query for the entity search, based on Frequent Pattern (FP)-Tree, considering the correlation between the entity relevance and the frequency of web pages. According to the experimental results presented in this paper, the proposed method (59% in the average precision) improved the accuracy five times, compared to the traditional query terms (less than 10% in the average precision).

Design and Implementation of Web Crawler Wrappers to Collect User Reviews on Shopping Mall with Various Hierarchical Tree Structure (다양한 계층 트리 구조를 갖는 쇼핑몰 상에서의 상품평 수집을 위한 웹 크롤러 래퍼의 설계 및 구현)

  • Kang, Han-Hoon;Yoo, Seong-Joon;Han, Dong-Il
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.318-325
    • /
    • 2010
  • In this study, the wrapper database description language and model is suggested to collect product reviews from Korean shopping malls with multi-layer structures and are built in a variety of web languages. Above all, the wrapper based web crawlers have the website structure information to bring the exact desired data. The previously suggested wrapper based web crawler can collect HTML documents and the hierarchical structure of the target documents were only 2-3 layers. However, the Korean shopping malls in the study consist of not only HTML documents but also of various web language (JavaScript, Flash, and AJAX), and have a 5-layer hierarchical structure. A web crawler should have information about the review pages in order to visit the pages without visiting any non-review pages. The proposed wrapper contains the location information of review pages. We also propose a language grammar used in describing the location information.