Journal of the Korea Society of Computer and Information (한국컴퓨터정보학회논문지)
- Volume 12 Issue 2 Serial No. 46
- /
- Pages.231-242
- /
- 2007
- /
- 1598-849X(pISSN)
- /
- 2383-9945(eISSN)
Location Generalization Method of Moving Object using $R^*$ -Tree and Grid
$R^*$ -Tree와 Grid를 이용한 이동 객체의 위치 일반화 기법
- Published : 2007.05.31
Abstract
The existing pattern mining methods[1,2,3,4,5,6,11,12,13] do not use location generalization method on the set of location history data of moving object, but even so they simply do extract only frequent patterns which have no spatio-temporal constraint in moving patterns on specific space. Therefore, it is difficult for those methods to apply to frequent pattern mining which has spatio-temporal constraint such as optimal moving or scheduling paths among the specific points. And also, those methods are required more large memory space due to using pattern tree on memory for reducing repeated scan database. Therefore, more effective pattern mining technique is required for solving these problems. In this paper, in order to develop more effective pattern mining technique, we propose new location generalization method that converts data of detailed level into meaningful spatial information for reducing the processing time for pattern mining of a massive history data set of moving object and space saving. The proposed method can lead the efficient spatial moving pattern mining of moving object using by creating moving sequences through generalizing the location attributes of moving object into 2D spatial area based on
패턴 탐사에 관한 기존의 연구들[1,2,3,4,5,6,11,12,13]은 이동 객체의 위치 이력 데이터 집합에 대한 위치 일반화 접근법을 사용하지 않거나 사용해도 특정 공간상의 이동 패턴들 중 단순히 시공간 제약이 없는 빈발 패턴만을 추출하므로, 특정 지점들 간의 최적 이동 경로나 스케줄링 경로와 같은 시공간 제약을 갖는 빈발 패턴 탐사에는 적용하기 어렵다. 또한 패턴 탐사의 수행에 있어 기존의 기법들은 데이터베이스에 대한 반복 접근을 줄이기 위해 메모리 상에 패턴 트리를 생성하여 사용하므로 보다 많은 메모리 공간을 소요하게 된다. 따라서 이러한 기존 탐사 기법들의 문제점들을 해결하기 위한 보다 효율적인 패턴 탐사 기법이 필요한 실정이다. 효율적 탐사 기법을 개발하기 위하여 본 논문에서는 방대한 이동 객체의 이력 데이터 집합에 대한 탐사 수행 시간 및 탐사에 필요한 메모리 공간을 최소화하기 위해서 상세 수준의 데이터들을 의미있는 공간영역 정보로 변환하는 새로운 위치 일반화 방법을 제안한다. 제안된 방법은 패턴 탐사의 전처리 과정에서
Keywords