• Title/Summary/Keyword: 통계적체적요소

Search Result 8, Processing Time 0.019 seconds

Development of the Big-size Statistical Volume Elements (BSVEs) Model for Fiber Reinforced Composite Based on the Mesh Cutting Technique (요소 절단법을 사용한 섬유강화 복합재료의 대규모 통계적 체적 요소 모델 개발)

  • Park, Kook Jin;Shin, SangJoon;Yun, Gunjin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.251-259
    • /
    • 2018
  • In this paper, statistical volume element modeling method was developed for multi-scale progressive failure analysis of fiber reinforced composite materials. Big-size statistical volume elements (BSVEs) was considered to minimize the size effect in the micro-scale, by including as many fibers as possible. For that purpose, a mesh cutting method is suggested and adapted into the fiber model generator that creates finite element domain rapidly. The fiber defect model was also developed based on the experimental distribution of the fiber strength. The size effects from the local load sharing (LLS) are evaluated by increasing the fiber inclusion in the micro-scale model. Finally, continuum damage mechanics (CDM) model to the fiber direction was extracted from numerical analysis on BSVEs. And it was compared with strength prediction from typical representative volume element (RVE) model.

Permeability Prediction of Gas Diffusion Layers for PEMFC Using Three-Dimensional Convolutional Neural Networks and Morphological Features Extracted from X-ray Tomography Images (삼차원 합성곱 신경망과 X선 단층 영상에서 추출한 형태학적 특징을 이용한 PEMFC용 가스확산층의 투과도 예측)

  • Hangil You;Gun Jin Yun
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.40-45
    • /
    • 2024
  • In this research, we introduce a novel approach that employs a 3D convolutional neural network (CNN) model to predict the permeability of Gas Diffusion Layers (GDLs). For training the model, we create an artificial dataset of GDL representative volume elements (RVEs) by extracting morphological characteristics from actual GDL images obtained through X-ray tomography. These morphological attributes involve statistical distributions of porosity, fiber orientation, and diameter. Subsequently, a permeability analysis using the Lattice Boltzmann Method (LBM) is conducted on a collection of 10,800 RVEs. The 3D CNN model, trained on this artificial dataset, well predicts the permeability of actual GDLs.

A Study on the Groundwater Flow and Solute Transport in Discontinuous Rock Mass Using Fracture Network Analysis : An Estimation of Equivalent Permeability on Discontinuous Rock Mass (균열망 해석법을 이용한 불연속 암반의 지하수 유동 및 용질이동 연구 : 불연속 암반의 등가 투수계수 추정)

  • Ju, Kwang-Su
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.129-137
    • /
    • 2000
  • This paper presents groundwater flow characteristics in discontinuous rock mass using fracture network program(NAPSAC) by statistical approach. Equivalent permeability coefficients are estimated from borehole data around Mabuk test tunnel site and fracture map on the arch of the tunnel. The reliability of fracture network model is obtained from determination of input data for statistical fracture network analysis from the real data(data of fracture network, data of hydraulic tests). The variation of permeability and mean anisotropic permeability coefficients are calculated from the realized model by increasing the size. As a result of analysis, a strong anisotropy of permeability is observed according to the direction of the fracture sets around the test tunnel.

  • PDF

A Study on the Groundwater Flow and Solute Transport in Discontinuous Rock Mass Using Fracture Network Analysis: An Estimation of Equivalent Permeability on Discontinuous Rock Mass (균열망 해석법을 이용한 불연속 암반의 지하수 유동 및 용질이동 연구: 불연속 암반의 등가 투수계수 추정)

  • 주광수
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.378-386
    • /
    • 2000
  • This paper presents groundwater flow characteristics in discontinuous rock mass using fracture network program(NAPSAC) by statistical approach. Equivalent permeability coefficients are estimated from borehole data around Mabuk test tunnel site and fracture map on the arch of the tunnel. The reliability of fracture network model is obtained from determination of input data for statistical fracture network analysis from the real data(data of fracture network, data of hydraulic tests). The variation of permeability and mean anisotropic permeability coefficients are calculated from the realized model by increasing the size. As a result of analysis, a strong anisotropy of permeability is observed according to the direction of the fracture sets around the test tunnel.

  • PDF

Decision of GIS Optimum Grid on Applying Distributed Rainfall-Runoff Model with Radar Resolution (레이더 자료의 해상도를 고려한 분포형 강우-유출 모형의 GIS 자료 최적 격자의 결정)

  • Kim, Yon-Soo;Chang, Kwon-Hee;Kim, Byung-Sik;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1201-1205
    • /
    • 2010
  • 최근 몇 년간 기후변화에 의해 기상이변이 발생하고 있으며 이에 따른 집중호우로 인한 홍수피해가 심각한 수준으로 발생하고 있다. 이에 수문기상학적 요소와 특성인자들의 정확한 상호 연관성의 규명과 공간적 변동성 해석은 강우-유출 모형에서 발생하는 불확실성을 감소시키는데 중요한 요소라고 할 수 있다. 이에 본 연구에서는 레이더 강우 격자 해상도와 지형인자 격자 해상도에 따라 강우-유출모형이 어떻게 반응하는지 분석하였다. 본 연구에서는 가-분포 강우-유출 모형인 ModClark 모형을 이용하여 강원도 인제군의 내린천 유역을 대상으로 광덕산 레이더자료를 이용하였다. ModClak 모형 구성을 위한 GIS 지형공간 자료는 30m, 150m, 250m, 350m 격자크기의 DEM을 사용하였으며, 2006년 7월 14일부터 7월 17일까지의 관측레이더 강우자료를 500m, 1km, 2km, 5km, 10km 사용하여 유출모의를 실시하고, 각각의 격자해상도에 따른 모의 결과를 비교하기 위해 유출수문곡선을 작성하고 유출량 변화를 모의하였다. 분석 결과 첨두유량 및 유출체적에 대해서는 DEM 30m~150m, Grid 500m~2,000m 크기의 격자일 때 가장 최적의 유출 모의를 한 것으로 분석되었으며, 통계적 분석에 의한 분석결과에서는 모든 DEM 격자는 Grid 500m인 경우, 모든 Grid 격자는 DEM 30m인 경우에 모형의 적합성이 높은 것으로 나타났고, 민감도 산정 결과 지수 등급이 높은 DEM이 분포형 모형의 결과 값에 큰 영향을 주는 것으로 분석되었다.

  • PDF

Development of RVE Reconstruction Algorithm for SMC Multiscale Modeling (SMC 복합재료 멀티스케일 모델링을 위한 RVE 재구성 알고리즘 개발)

  • Lim, Hyoung Jun;Choi, Ho-Il;Yoon, Sang Jae;Lim, Sang Won;Choi, Chi Hoon;Yun, Gun Jin
    • Composites Research
    • /
    • v.34 no.1
    • /
    • pp.70-75
    • /
    • 2021
  • This paper presents a novel algorithm to reconstruct meso-scale representative volume elements (RVE), referring to experimentally observed features of Sheet Molding Compound (SMC) composites. Predicting anisotropic mechanical properties of SMC composites is challenging in the multiscale virtual test using finite element (FE) models. To this end, an SMC RVE modeler consisting of a series of image processing techniques, the novel reconstruction algorithm, and a FE mesh generator for the SMC composites are developed. First, micro-CT image processing is conducted to estimate probabilistic distributions of two critical features, such as fiber chip orientation and distribution that are highly related to mechanical performance. Second, a reconstruction algorithm for 3D fiber chip packing is developed in consideration of the overlapping effect between fiber chips. Third, the macro-scale behavior of the SMC is predicted by the multiscale analysis.

THE EFFECT OF C-FACTOR AND VOLUME ON MICROLEAKAGE OF COMPOSITE RESIN RESTORATIONS WITH ENAMEL MARGINS (법랑질 변연으로 이루어진 복합레진 수복물의 체적과 C-factor가 미세누출에 미치는 영향)

  • Koo, Bong-Joo;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.31 no.6
    • /
    • pp.452-459
    • /
    • 2006
  • Competition will usually develop between the opposing walls as the restorative resin shrinks during polymerization. Magnitude of this phenomenon may be depended upon cavity configuration and volume. The purpose of this sturdy was to evaluate the effect of cavity configuration and volume on microleakage of composite resin restoration that has margins on the enamel site only. The labial enamel of forty bovine teeth was ground using a model trimmer to expose a flat enamel surface. Four groups with cylindrical cavities were defined, according to volume and configuration factor(Depth x Diameter / C-factor) - Group I : 1.5 mm ${\times}$ 2.0 mm / 4.0, Group II : 1.5 mm ${\times}$ 6.0 mm / 2.0, Group III : 2.Omm ${\times}$ 1.72 mm / 5.62, Group IV : 2.0 mm ${\times}$ 5.23 mm / 2.54. After treating with fifth-generation one-bottle adhesive - BC Plus$^{TM}$ (Vericom, AnYang, Korea), cavities were bulk flted with microhybrid composite resin - Denfill$^{TM}$ (Vericom). Teeth were stored in distilled water for one day at room temperature and were finished and polished with Sof-Lex system. Specimens were thermocycled 500 times between 5$^{\circ}$C and 55$^{\circ}$C for 30 second at each temperature. Teeth were isolated with two layers of nail varnish except the restoration surface and 1 mm surrounding margins. Electrical conductivity (${\mu}$A) was recorded in distilled water by electrochemical method. Microleakage scores were compared and analyzed using two-way ANOVA at 95% level. The results were as follows: 1. Small cavity volume showed lower microleakage score than large one, however, there was no statistically significant difference. 2. There was no relationship between cavity configuration and microleakage. Factors of cavity configuration and volume did not affect on microleakage of resin restorations with enamel margins only.

Decision of GIS Optimum Grid on Applying Distributed Rainfall-Runoff Model with Radar Resolution (레이더 자료의 해상도를 고려한 분포형 강우-유출 모형의 GIS 자료 최적 격자의 결정)

  • Kim, Yon-Soo;Chang, Kwon-Hee;Kim, Byung-Sik;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.105-116
    • /
    • 2011
  • Changes in climate have largely increased concentrated heavy rainfall, which in turn is causing enormous damages to humans and properties. Therefore, the exact relationship and the spatial variability analysis of hydrometeorological elements and characteristic factors is critical elements to reduce the uncertainty in rainfall -runoff model. In this study, radar rainfall grid resolution and grid resolution depending on the topographic factor in rainfall - runoff models were how to respond. In this study, semi-distribution of rainfall-runoff model using the model ModClark of Inje, Gangwon Naerin watershed was used as Gwangdeok RADAR data. The completed ModClark model was calibrated for use DEM of cell size of 30m, 150m, 250m, 350m was chosen for the application, and runoff simulated by the RADAR rainfall data of 500m, 1km, 2km, 5km, 10km from 14 to 17 on July, 2006. According to the resolution of each grid, in order to compare simulation results, the runoff hydrograph has been made and the runoff has also been simulated. As a result, it was highly runoff simulation if the cell size is DEM 30m~150m, RADAR rainfall 500m~2km for peak flow and runoff volume. In the statistical analysis results, if every DEM cell size are 500m and if RADAR rainfall cell size is 30m, relevance of model was higher. Result of sensitivity assessment, high index DEM give effect to result of distributed model. Recently, rainfall -runoff analysis is used lumped model to distributed model. So, this study is expected to make use of the efficiently decision criteria for configurated models.