DOI QR코드

DOI QR Code

THE EFFECT OF C-FACTOR AND VOLUME ON MICROLEAKAGE OF COMPOSITE RESIN RESTORATIONS WITH ENAMEL MARGINS

법랑질 변연으로 이루어진 복합레진 수복물의 체적과 C-factor가 미세누출에 미치는 영향

  • Koo, Bong-Joo (Department of Conservative Dentistry, College of Dentistry, Dankook University) ;
  • Shin, Dong-Hoon (Department of Conservative Dentistry, College of Dentistry, Dankook University)
  • 구봉주 (단국대학교 치과대학 치과보존학교실) ;
  • 신동훈 (단국대학교 치과대학 치과보존학교실)
  • Published : 2006.11.30

Abstract

Competition will usually develop between the opposing walls as the restorative resin shrinks during polymerization. Magnitude of this phenomenon may be depended upon cavity configuration and volume. The purpose of this sturdy was to evaluate the effect of cavity configuration and volume on microleakage of composite resin restoration that has margins on the enamel site only. The labial enamel of forty bovine teeth was ground using a model trimmer to expose a flat enamel surface. Four groups with cylindrical cavities were defined, according to volume and configuration factor(Depth x Diameter / C-factor) - Group I : 1.5 mm ${\times}$ 2.0 mm / 4.0, Group II : 1.5 mm ${\times}$ 6.0 mm / 2.0, Group III : 2.Omm ${\times}$ 1.72 mm / 5.62, Group IV : 2.0 mm ${\times}$ 5.23 mm / 2.54. After treating with fifth-generation one-bottle adhesive - BC Plus$^{TM}$ (Vericom, AnYang, Korea), cavities were bulk flted with microhybrid composite resin - Denfill$^{TM}$ (Vericom). Teeth were stored in distilled water for one day at room temperature and were finished and polished with Sof-Lex system. Specimens were thermocycled 500 times between 5$^{\circ}$C and 55$^{\circ}$C for 30 second at each temperature. Teeth were isolated with two layers of nail varnish except the restoration surface and 1 mm surrounding margins. Electrical conductivity (${\mu}$A) was recorded in distilled water by electrochemical method. Microleakage scores were compared and analyzed using two-way ANOVA at 95% level. The results were as follows: 1. Small cavity volume showed lower microleakage score than large one, however, there was no statistically significant difference. 2. There was no relationship between cavity configuration and microleakage. Factors of cavity configuration and volume did not affect on microleakage of resin restorations with enamel margins only.

와동벽과 복합레진 수복물이 접착될 때, 복합레진의 치질에 대한 접착력과 레진 자체의 중합 시 발생하는 수축응력이 상충하게 된다. 이러한 수축응력의 크기는 와동의 형태요소 (C-factor)와 수복물의 체적에 영향을 받는다. 이에 본 실험에서는 단일 병 접착제를 사용한 복합레진 수복 시 법랑질 변연만으로 이루어진 와동의 C-factor와 체적이 미세누출에 미치는 영향을 미세 전류 측정법을 이용하여 정량적으로 분석하고 평가하였다. 연마기를 이용하여 40개의 건전한 우치 협면에 편평한 법랑질 표면을 형성하였다. 각각 10개의 치아에 원통형 와동을 형성하였으며, 와동의 깊이와 직경에 따라 4개 군으로 분류하였다 ( I군: 1.5 mm ${\times}$ 2.0 mm, II군: 1.5 mm ${\times}$ 6.0 mm, III군: 2.0 mm ${\times}$ 1.72 mm, IV군: 2.0 mm ${\times}$ 5.23 mm). 각기 와동의 C-factor는 4, 5.62, 2, 2.54를 보였다. 산 부식 후 단일 병 접착제인 BC Plus$^{TM}$ (Vericom, Korea)를 제조사의 지시에 따라 적용하고, 미세혼합형 복합레진인 Denfil$^{TM}$(Vericom)을 충전하였다. 40초씩 광중합 후 치아를 실온에서 증류수에 24시간 동안 보관한 다음, Sof-Lex system을 이용하여 연마하였고, 5$^{\circ}$C와 55$^{\circ}$C범위에서 500회 열순환을 시행하였다. 이후 미세전류 측정을 위해 치수강 내에 증류수를 채우고 치근단공을 통해 0.018 stainless wire를 삽입한 후 sticky wax로 근첨부를 밀봉하였으며, nail varnish를 수복물의 변연에서 1 mm를 제외한 전체 치면에 2회 도포하였다. 미세누출의 측정은 전기 화학적 방법을 이용하여 측정하였으며, 통계적 유의성은 95% 유의 수준의 Two-way ANOVA로 검증하여 , 다음과 같은 결과를 얻었다. 1. 복합레진 수복물의 체적이 적은 것이 큰 것에 비해 미세누출도가 적었으나, 통계학적으로 유의한 차이는 없었다. 2. 와동 형태와 연관된 C-factor는 복합레진 수복물의 미세누출도에 영향을 주지 않았다. 법랑질 변연을 갖는 와동에 단일 병 접착제를 사용한 본 실험에서는 복합레진의 중합 시 발생하는 수축응력에 영향을 미치는 것으로 알려진 수복물의 체적과 C-factor가 미세누출도에 영향을 주지 못하였다. 이는 법랑질과 접착시스템과의 강력한 접착력에 기인한 것으로 보이며, 앞으로 이에 대한 더 많은 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Dentin bonding systems: an update. Council on Dental Materials. Instruments. and Equipment. J Am Dent Assoc 114(1) :91-95, 1987 https://doi.org/10.14219/jada.archive.1987.0049
  2. Nakabayashi N, Kosima K, Masuhara E. Promotion of adhesion by infiltration of monomer into tooth substrates. J Biomed Mat Res 16:265-273. 1982 https://doi.org/10.1002/jbm.820160307
  3. Bowen RL. Properties of a silica-reinforced polymer for dental restoration. J Am Dent Assoc 66:57-64, 1963 https://doi.org/10.14219/jada.archive.1963.0010
  4. Lavella R, Lambrechts P, Van Meerbeek B, Vanherle G. Polymerization shrinkage and elasticity of flow able composite and filling adhesive. Dent Mat 15: 128-137. 1999 https://doi.org/10.1016/S0109-5641(99)00022-6
  5. Brannstrom M. Communication between the oral cavity and the dental pulp associated with restorative treatment. Oper Dent 9:57-68, 1984
  6. Jorgensen KD, Asmussen E, Shimokobe H. Enamel damage by contracting restorative resin. Scand J Dent Res 83:120-122,1975
  7. Sheth JJ, Fuller JL, Jensen ME. Cuspal deformation and fracture resistance of teeth with dentin adhesives and composites. J Prosthet Dent 60(5) :560-569, 1988 https://doi.org/10.1016/0022-3913(88)90215-6
  8. Choi KK, Ryu GJ, Choi SM, Lee MJ, Park SJ, Ferracane JL. Effects of cavity configuration on composite restoration. Oper Dent 29(4) :462-469. 2004
  9. Davidson CL, de Gee AJ. Relaxation of polymerization contraction stressed by flow in dental composite. J Dent Res 63:146-148,1984 https://doi.org/10.1177/00220345840630021001
  10. Feilzer AJ, de Gee AJ, Davidson CL. Quantitative determination of stress reduction by flow in composite restoration. Dent Mat 6: 167-171. 1990 https://doi.org/10.1016/0109-5641(90)90023-8
  11. de la Macorra JC, Gomez-Fernandez S. Quantification of the configuration factor in Class I and II cavities and simulated cervical erosions, Eur J Prosthodont Restor Dent 4(1) :29-33, 1996
  12. Miguel A, de la Maccora JC. A predictive formula of the contraction stress in restorative and luting materials attending to free and adhesive surface. volume and deformation. Dent Mat 17:241-246. 2001 https://doi.org/10.1016/S0109-5641(00)00077-4
  13. Ferracane JL. Mitchem JC. Relationship between composite contraction stress and leakage in class V cavities. Am J Dent 16:239-243, 2003
  14. Pashley DH, Ciucchi B, Sano H, Horner JA.Permeability of dentin to adhesive agents. Quintessence Int 24(9) :618-631, 1993
  15. Van Meerbeek B, Inokoshi S, Braem M, Lambrechts P, Vanherle G. Morphological aspects of the resin-dentin interdiffusion zone with different dentin adhesive systems, J Dent Res 71 (8): 1530-1540, 1992 https://doi.org/10.1177/00220345920710081301
  16. Van Meerbeek B, Peumans M, Verschueren M, Gladys S, Braem M, Lambrechts P, Vanherle G. Clinical status of ten dentin adhesive systems. J Dent Res 73(11):1690-1702.1994 https://doi.org/10.1177/00220345940730110401
  17. Gladys S, Van Meerbeek B, Lambrechts P, Vanherle G. Microleakage of adhesive restorative materials. Am J Dent 14(3): 170-176, 2001
  18. Hannig M, Friedrichs C. Comparative in vivo and in vitro investigation of interfacial bond variability, Oper Dent 26(1):3-11.2001
  19. Eick JD, Welch FH. Dentin adhesives-do they protect the dentin from acid etching? Quintessence Int 17(9):533-544, 1986
  20. Johnston WM, Leung RL, Fan PL. A mathematical model for post-irradiation hardening of photo activated composite resins. Dent Mat 1(5): 191-194. 1985 https://doi.org/10.1016/S0109-5641(85)80017-8
  21. Iwami Y, Yamamoto H, Ebisu S. J A new electrical method for detecting marginal leakage of in vitro resin restorations. J Dent 28(4):241-247.2000 https://doi.org/10.1016/S0736-5748(99)00079-9
  22. Mattison GD, von Fraunhofer JA. Electrochemical microleakage study of endodontic sealer/cements. Oral Burg Oral Med Oral Pathol 55(4):402-407, 1983 https://doi.org/10.1016/0030-4220(83)90195-0
  23. Nakano Y. A new electrical testing method on marginal leakage of composite resin restorations. Japan J conserv Dent 8(4): 1183-1198, 1985
  24. Delivanis PD, Chapman KA. Comparison and reliability of techniques for measuring leakage and marginal penetration. Oral Burg Oral Med Oral Pathol 53(4) :410-416, 1982 https://doi.org/10.1016/0030-4220(82)90444-3
  25. Buonocore MG. A simple method of increasing the adhesion of acrylic filling materials to enamel surfaces. J Dent Res 34(6):849-853, 1955 https://doi.org/10.1177/00220345550340060801
  26. Gwinnett AJ, Matsui A. The physical relationship between enamel and adhesive. Arch Oral Biol 12(12):1615-1620, 1967 https://doi.org/10.1016/0003-9969(67)90195-1
  27. Retief DH. Effect of conditioning the enamel surface with phosphoric acid. J Dent Res 52 (2): 333-341, 1973 https://doi.org/10.1177/00220345730520022401
  28. Silverstone LM. Fissure sealants. Laboratory studies. Caries Res 8(1) :2-26, 1974
  29. Gwinnett AJ. Histologic changes in human enamel following treatment with acidic adhesive conditioning agents. Arch Oral Biol 16(7):731-738, 1971 https://doi.org/10.1016/0003-9969(71)90118-X
  30. Eick JD, Robinson SJ, Cobb CM, Chappell RP, Spencer P. The dentinal surface: its influence on dentinal adhesion. Quintessence lnt 23(1) :43-51. 1992
  31. Eick JD, Gwinnett AJ, Pashley DH, Robinson SJ. Current concepts on adhesion to dentin. Crit Rev Oral BioI Med 8(3) :306-335, 1997 https://doi.org/10.1177/10454411970080030501
  32. Swift EJ Jr, Perdigao J, Heymann HO. Bonding to enamel and dentin: a brief history and state of the art. Quintessence Int 26(2) :95-110, 1995
  33. Bastos PA. Retief DH. Bradley EL, Denys FR. Effect of etch duration on the shear bond strength of a microfilm composite resin to enamel. Am J Dent 1(4): 151-157, 1988
  34. Barkmeier WW, Shaffer SE, Gwinnett AJ. Effects of 15 vs 60 second enamel acid conditioning on adhesion and morphology. Oper Dent 11(3):111-116,1986
  35. Mitchem JC. The use and abuse of aesthetic materials in posterior teeth. lnt Dent J 38(2): 119-125, 1988
  36. Frankenberger R, Kramer N, Petschelt A. Long-term effect of dentin primers on enamel bond strength and marginal adaptation. Oper Dent 25(1):11-19,2000
  37. Franco EB, Gonzaga Lopes L, Lia Mondelli RF, da Silva e Souza MH Jr, Pereira Lauris JR. Effect of the cavity configuration factor on marginal microleakage of esthetic restoration materials Am J Dent 16(3):211-214,2003
  38. Mallmann A, Zovico F, Soares M, Placido E, Ferrari M, Cardoso PE. Microtensile dentin bond strength of self-etching and single-bottle adhesive system in different cavity configurations. J Adhes Dent 5(2): 121-127, 2003
  39. Armstrong SR, Keller JC, Boyer DB. The influence of water storage and C-factor on dentin-resin composite microtensile bond strength and pathway utilizing a filled and unfilled adhesive. Dent Mat 17(3) :268-276, 2001 https://doi.org/10.1016/S0109-5641(00)00081-6
  40. Barnes DM, Thompson VP, Blank LW, McDonald NJ. Microleakage of Class 5 composite resin restorations: a comparison between in vivo and in vitro. Oper Dent 18(6) :237-245, 1993
  41. Abdalla AI. Davidson CL.Comparison of the marginal integrity of in vivo and in vitro Class II composite restorations. J Dent 21(3): 158-162, 1993 https://doi.org/10.1016/0300-5712(93)90026-M
  42. Ferrari M. Yamamoto K. Vichi A. Finger WJ. Clinical and laboratory evaluation of adhesive restorative systems. Am J Dent 7(4) :217-219, 1994
  43. Momoi Y, Iwase H. Nakano Y, Kohno A, Asanuma A, Yanagisawa K. Gradual increases in marginal leakage of resin composite restorations with thermal stress. J Dent Res 69(10): 1659-1663. 1990 https://doi.org/10.1177/00220345900690100601
  44. Kemp-Scholte CM, Davidson CL. Complete marginal seal of Class V resin composite restorations effected by increased flexibility. J Dent Res 69(6):1240-1243. 1990 https://doi.org/10.1177/00220345900690060301

Cited by

  1. A survey on the use of composite resin in Class II restoration in Korea vol.34, pp.2, 2009, https://doi.org/10.5395/JKACD.2009.34.2.087
  2. Microleakage of the experimental composite resin with three component photoinitiator systems vol.34, pp.4, 2009, https://doi.org/10.5395/JKACD.2009.34.4.333
  3. Difference in bond strength according to filling techniques and cavity walls in box-type occlusal composite resin restoration vol.34, pp.4, 2009, https://doi.org/10.5395/JKACD.2009.34.4.350
  4. Influence of rebonding procedures on microleakage of composite resin restorations vol.35, pp.3, 2010, https://doi.org/10.5395/JKACD.2010.35.3.164