• Title/Summary/Keyword: 토양염분

Search Result 137, Processing Time 0.023 seconds

Comparison of the High Concentration Calcium Chloride(CaCl2) Salt Reduction Effect of Soil Amendment Agent and Planting Pennisetum alopecuroides (토양개량제와 수크령 식재에 따른 고농도 염화칼슘 염분저감 효과 비교)

  • Yang, Ji;Park, Jae-Hyeon;Yoon, Yong-Han;Ju, Jin-Hee
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.4
    • /
    • pp.345-354
    • /
    • 2020
  • The purpose of this study was to investigate the effects of soil amendment treatments, such as hydroball, and active carbon, and planting Pennisetum alopecuroides for reducing calcium chloride (CaCl2) of soil leachate and the growth of Pennisetum alopecuroides. The experiment planted Pennisetum alopecuroides in a plastic pot with a diameter of 10 cm and a height of 9 cm in a greenhouse April-October 2018. The experimental group comprised six treatments, including Non-treatment (Cont.), Hydroball (H), Active carbon (AC), planting Pennisetum alopecuroides (P), hydroball + planting Pennisetum alopecuroides (H + P), and active carbon + planting Pennisetum alopecuroides (AC + P). The dissolution of the CaCl2 concentration 200ml of 10g/L was irrigated once every two weeks. We measured the growth (plant height, leaf length, leaf width, number of leaves), EC, pH, and exchangeable cations (K+, Ca2+, Na+, and Mg2+) according to the high concentration of CaCl2 in the plant and soil leachate. In a treatment with the 'hydroball' amendment, the soil leachate electrical conductivity (EC), and the cation exchangeable were decreased more than those of the control, while the growth of Pennisetum alopecuroides relative growth rate(RGR) increased. Overall, application with the hydroball amendment added the planting of Pennisetum alopecuroides improved the salt reduction effect more than the control group. These results indicate that the application of the soil amendment agent hydroball was suitable soil amendments in accordance with the high concentration of calcium chloride (CaCl2). Also, Planting Pennisetum alopecuroides is expected to be appropriate for salt-tolerant plant for soil affected by deicing salt agents.

Injuries of Landscape Trees and Causes in the Reclaimed Seaside Areas (임해매립지 조경수목의 피해현황 및 요인분석)

  • 최일홍;황경희;이경재
    • Korean Journal of Environment and Ecology
    • /
    • v.16 no.1
    • /
    • pp.10-21
    • /
    • 2002
  • This study was intended to investigate injury rates of landscape trees planted in the reclaimed seaside areas and to analyse their causes in planting environment. The planting environment such as soil properties, reclaimed depth of soil, soil hardness, salt consistency of soil, and drainage system were surveyed in 8 reclaimed seaside areas in the middle and southern regions of the country. Injury rates of 42 species, 1,233 trees and growth of branches in 6 species. 130 trees were measured and analysed to fond out salt-resistant trees in the reclaimed lands. The results of the survey are as follows; the average injury rate of evergreen trees was 32%. which was much lower than that of deciduous trees as 52%. The lower injured trees in the 8 reclaimed lands were Pinus thunbergii, Pinus parvinora. Juniperus chinensis 'Kaizuka', Pinus koraiensis, Acer trifdum, Koelreuteria paniculata and Metasequoia glyptostroboides. The higher injured trees were Acer palmatum, Magnolia kobus. Lagerstroemia indica, Diospiros kaki, Cercidiphyllum japonicum, Sorbus commixta, Prunus yedoensis, Pinus desinora, Chaenomeles sinensis, Albizzia julibrissin and Zelkowa serrata. At least the mounding of 1.7m depth of soil is needed from the tidal saline soil to the roots of trees to protect trees from salt injury Roots of trees were found to have infiltrated to 0.77m under the soil of which solidity was over 4.5kg/㎥. And 22 of total 25 soils were acid from pH 3.72 to pH 5.85. Injury rate of trees was much higher when they were detached from the sea, and planted on the drainage.

Soil Salinity and Salt Spray Drift Tolerance of Native Trees on the Coastal Windbreaks in the South-Sea, Korea (한국 남해안방풍림 자생수종의 내염성 및 내조성 수종 선발)

  • Kim, Do-Gyun
    • Korean Journal of Environment and Ecology
    • /
    • v.24 no.1
    • /
    • pp.14-25
    • /
    • 2010
  • This study was carried out to investigate the soil salinity and salt spray drift of the indigenous windbreak trees, and its main purpose was to provide basic data for the selection of salt-tolerant trees in the saline coastal region in the South Sea of Korea. The soil salinity($EC_{1:5}$)was $0.18dSm^{-1}$, which was an average degree of the whole areas of investigation whose salinity degree ranged from $0.05dSm^{-1}$ to $0.58dSm^{-1}$. The level of soil salinity gradually decreased as it moved farther inland, except the belt I. The level of decreasing soil salinity was found to be in the following order: belt II, belt III, belt I, belt IV. The degree of soil salinity was $EC_{1:5}$ $0.22dSm_{1:5}$, $0.22dSm_{1:5}$ $0.19dSm^{-1}$ and $0.13dSm^{-1}$ respectively. The total 110 taxa, which consisted of 45 families, 74 genus, 101 species, and 9 varieties, were found to be tolerant to both soil salinity and salt spray drift. The trees that grow in the highest degree of salinity($EC_{1:5}$ $0.50dSm^{-1}$)were Parthenocissus tricuspidata(Siebold & Zucc.), Planch and Lonicera japonica Thunb. The next group of trees that grow in the high degree of salinity ranging from $EC_{1:5}$ 0.41 to $0.50dSm^{-1}$ was Cudrania tricuspidata(Carr.) Bureau ex Lavall$\acute{e}$e, Rubus parvifolius L., Zanthoxylum schinifolium(Siebold & Zucc.), Hedera rhombea(Miq.) Bean., Robinia pseudoacacia L., Quercus serrata Thunb., Callicarpa dichotoma(Lour.) K. Koch, and so on. The woody species which grew in the entire belts were Pueraria lobata(Willd.) Ohwi and Vitis flexuosa Thunb., and Vitex rotundifolia L. f. which was known to be highly tolerant to salt spray drift was found only in belt I. The woody species with high important value(IV) were Zelkova serrata(Thunb.) Makino., Celtis sinensis Pers., Koelreuteria paniculata Laxmann, Mallotusjaponicus(Thunb.) Muell. Arg., Trachelospermum asiaticum(Siebold & Zucc.) NAKAI, and Pueraria lobata(Willd.) Ohwi. These species were classified as native windbreak trees that are comparatively more tolerant to salt spray drift than other kinds.

Studies on the Changes of Soil Salinity in the Kyehwa Saline Paddy Soil (계화도(界火島) 간척지(干拓地) 토양(土壤)의 연도별(年度別) 염분함량(鹽分含量) 변화(變化))

  • Hwang, Nam-Yul;Ryu, Jeong;Na, Jong-Seong;Oh, Dong-Hoon;Park, Keon-Ho;Choi, Bong-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.24 no.4
    • /
    • pp.265-271
    • /
    • 1991
  • This study was crried out in order to changes of soil salinity in the Kyehwa saline paddy soil from 1978 find out the to 1988. Surveyed soil was Munpo, Gwanghwal, Yeompo, Hasa series and distribution ratio of those area was 51.2%, 16.6 %, 30.2 %, 1.0 % respectively on the 2,500ha. In the cultivated field, the ratio of desalinization was increased in accordance with rice cultivating years but desalization was not conduct after six years in the uncultivated field. Soil salinity of Summer(during cultivation) and Fall(after cultivation) were 52.3 %, 62.5 % respectively as compare with Spring(before cultivating) and about changes of soil salinity according to different soil depth, underground layer 20-40cm and 40-60cm were raised the rate 28.4 % and 66.2 % in accordance with top soil.

  • PDF

Characteristics of Plants Distribution by Vegetation Community at Janghang Wetland in Han-river Esturary, Korea (한강 하구 장항습지의 식생군락별 식물 분포 특성)

  • Mi-yeo Na;Choong-hyeon Oh
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.1
    • /
    • pp.59-69
    • /
    • 2023
  • This study was carried for the purpose of using basic data for vegetation management plans by analyzing the current status of herbaceous community and Salix spp. community at Janghang Wetland in Han-river estuary. In order to investigate the vegetation status, the 50 plots were investigated and analyzed using the quadrat and Braun-Branquet method. In the herbaceous community, were found a total of 31 taxa of 11 families, 24 genera, 28 species, and 3 variants. A total of 42 taxa of 16 families, 33 genera, 39 species and 3 variants were appeared in the Salix subfragilis community, and a total of 46 taxa with classification of 19 families, 37 genera, 43 species, and 3 varieties were founded in the Salix koreensis community. As for the analysis of life-form and dominance, the hydatophytes was relatively high in the Salix subfragilis community, the hemicryptothytes was high in herbaceous community and therophytes was high in Salix koreensis community. As a result of correlation analysis of electrical conductivity(EC) and exchangeable sodium(Na+) in the soil, hydatophytes and hemicryptothytes showed a negative correlation, and therophytes showed a positive correlation. Therefore, it was analyzed that Salix koreensis and therophytes have a high rate of appearance in relatively dry and salty soil. Salix subfragilis, hydatophytes, and hemicryptothytes have a high rate of appearance in low salt concentrations and wet areas.

Three-Dimensional Numerical Simulation of Impacts of Fault Existence on Groundwater Flow and Salt Transport in a Coastal Aquifer, Buan, Korea (한국 부안 지역 해안 대수층 내의 지하수 유동 및 염분 이동에 대한 단층 존재의 영향 삼차원 수치 모의)

  • Park, Ju-Hyun;Kihm, Jung-Hwi;Kim, Han-Tae;Kim, Jun-Mo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.33-46
    • /
    • 2008
  • A series of three-dimensional numerical simulations using a generalized multidimensional hydrodynamic dispersion numerical model is performed to simulate effectively and to evaluate quantitatively impacts of fault existence on densitydependent groundwater flow and salt transport in coastal aquifer systems. A series of steady-state numerical simulations with calibration is performed first for an actual coastal aquifer system which contains a major fault. A series of steadystate numerical simulations is then performed for a corresponding coastal aquifer system which does not have such a major fault. Finally, the results of both numerical simulations are compared with each other and analyzed. The results of the numerical simulations show that the major fault produces hydrogeologically significant heterogeneity and true anisotropy in the actual coastal aquifer system, and density-dependent groundwater flow, salt transport, and seawater intrusion patterns in the coastal aquifer systems are intensively and extensively dependent upon the existence or absence of such a major fault. Especially, the major fault may act as a pathway for groundwater flow and salt transport along the direction parallel to its plane, while it may also behave as a barrier against groundwater flow and salt transport along the direction perpendicular to its plane.

Three-Dimensional Numerical Simulation of Impacts of Urbanization on Groundwater Flow and Salt Transport in a Coastal Aquifer, Suyeong-Gu, Busan, Korea (한국 부산광역시 수영구 지역 해안 대수층 내의 지하수 유동 및 염분 이동에 대한 도시화의 영향 삼차원 수치 모의)

  • Cho, Hyeon-Jo;Kim, Jun-Mo
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.1-18
    • /
    • 2009
  • A series of three-dimensional numerical simulations using a generalized multidimensional hydrodynamic dispersion numerical model is performed to simulate effectively and to evaluate quantitatively impacts of urbanization on density-dependent groundwater flow and salt transport in a coastal aquifer system, Suyeong-Gu, Busan, Korea. A series of steady-state numerical simulations of groundwater flow and salt transport before urbanization with material properties of geologic formations, which are established by numerical modeling calibrations considering all the urbanization factors, is performed first without considering all the urbanization factors. A series of transient-state numerical simulations of groundwater flow and salt transport after urbanization is then performed considering the urbanization factors individually and all together. Finally, the results of both numerical simulations are compared with each other and analyzed. The results of the numerical simulations show that density-dependent groundwater flow, salt transport, and seawater intrusion in the coastal aquifer system are intensively and extensively impacted by the urbanization factors. Especially, these urbanization factors result in the changes of the total groundwater volume and salt mass in the coastal aquifer system. However, such impacts of each urbanization factor are not spatially uniform but locally different.

Plant Distributions and Physicochemical Characteristics of Topsoil on the Reclaimed Dredging Area (임해준설매립지 식물분포와 표층토양의 이화학적 특성)

  • Nam, Woong;Kwak, Young-Se;Jeong, In-Ho;Lee, Deok-Beom;Lee, Sang-Suk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.3
    • /
    • pp.52-62
    • /
    • 2008
  • By analyzing specific plant distributions and physicochemical characteristics of topsoil in a reclaimed dredging area, baseline data was found of natural landscape planting sites, and developing dredged fill ground. The reclaimed dredging area is five different stands (1, 2, 3, 4 and 5) which were examined in this research. They are located from sea level to 15 meters in altitude and exhibited typical characteristics of the salt marsh in Gwangyang Bay. Species with high constancy in the vegetation on the reclaimed soil were classified into four stages. A total of 12, 15, 22, 27 and 35 different plant species were found and also increased in stands 1, 2, 3, 4 and 5, respectively. Moving from stand 1 to 5, halophytes decreased and non-halophytes increased. Desalination at each stage of the reclaimed dredging area was a driving force affecting the performance and distribution of halophytes and non-halophytes. Overall, 35 quadrats of soil were selected and analyzed for specific physicochemical characteristics of topsoil between O${\sim}$20cm. Results of the physicochemical analysis such as altitude, slope, vegetation and kind of reclaimed dredging soil, exhibited irregular increases or decreases. As survey areas moved from stand 1 to 4, desalination areas, soil acidity, electric conductions, content of salinity, available phosphorus, potassium, chlorine, calcium, and magnesium indicated decreasing patterns; however, total nitrogen, silt, and clay content increased. Cluster analysis and PCA by environmental data within the stands clearly showed five distinct vegetation patterns on the tested reclaimed area. These results indicate that the differences of performance and distribution of vegetation are due to the SAR in the reclaimed soil and related to the natural survival strategy at the given hostile habitat.