• Title/Summary/Keyword: 토양여과

Search Result 156, Processing Time 0.031 seconds

Biological Control of Phytophthora Blight of Red-pepper Caused by Phytophthora capsici;I. Selection of a Bacterial Antagonist against Photophthora capsici (고추 역병균(疫病菌)(병원균: Phytophthora capsici)의 생물학적(生物學的) 방제(防除);I. 고추 역병(疫病) 길항균(拮抗菌)의 선발(選拔))

  • Chang, Yoon-Hee;Chang, Sang-Moon;Lee, Dong-Hoon;Choi, Jyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.3
    • /
    • pp.289-295
    • /
    • 1996
  • This study was attempted to select an antagonist against Phytophthora blight of red-pepper caused by Phytophthora capsici. The three strains, A-35, A-67 and A-183 were isolated from the rhizosphere in soil where red-pepper had been cultivated continuously for a long time, and the strain A-83 was estimated to be the strongest antagonist against P. capsici. The A-183 strain was identified as a strain of Pseudomonas sp., showing the maximum antifungal activity, when cultured at $30^{\circ}C$ for 5 days in the potato extract medium(pH 6.5) containing 2.0% mannitol and 0.3% peptone.

  • PDF

Evaluation of Decreasing Concentration of Radon Gas for Indoor Air Quality with Magnesium Oxide Board using Anthracite (안트라사이트를 활용한 산화마그네슘 보드의 실내 공기질 중 라돈가스 농도 저감 평가)

  • Pyeon, Su-Jeong;Lim, Hyun-Ung;Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Radon gas, which is present on the earth, is a primary carcinogen released from rocks, soil, building materials, etc., and exists as a unique gas phase. In order to solve the risk of radon gas, we evaluated the basic performance which can be used as indoor finishing materials in addition to the radon gas reduction properties of the matrix using anthracite. An anthracite used as a conventional filter material was used to produce a matrix, and a test was conducted to replace the gypsum board, which is one of the building materials used in the existing room. As the anthracite replacement ratio increases, flexural failure load strength increases and thermal conductivity tends to decrease. Depending on the thickness of the board, the reduction performance of radon gas shows a slight difference.

Diversity of Fungi in Brackish Water in Korea (국내 기수역 환경의 균류 다양성)

  • Jeon, Yu Jeong;Goh, Jaeduk;Mun, Hye Yeon
    • The Korean Journal of Mycology
    • /
    • v.48 no.4
    • /
    • pp.457-473
    • /
    • 2020
  • We investigated the distribution and diversity of fungi in brackish water and soil from the Eulsukdo Island, Geumgang Estuary Bank, Suncheon Bay, Dae-ho Tide Embankment and coastal sand dune in Sinduri and Bu-nam Tide Embankment, Korea. Fungi were isolated from water samples by hand-pumped filtration, and soil samples were collected and diluted. The isolated fungi were incubated in potato dextrose agar at 25℃. A total of 173 fungal strains were isolated from brackish water and identified according to their respective internal transcribed spacer via phylogenetic analysis. The diversity of all fungal strains was analyzed according to diversity indices. The fungal strains belonged to any of 18 taxonomic orders: Pleosporales, Eurotiales, Capnodiales, Hypocreales, Polyporales, Saccharomycetales, Agaricales, Glomerellales, Mucorales, Dothideales, Russulales, Xylariales, Sordariales, Myrmecridiales, Tubeufiales, Onygenales, Cantharellales, and Amphisphaeriales. Cladosporium spp. (20%), Penicillium spp. (19%), and Fusarium sp. (5%) comprised majority of the identified strains. Two species from the fungal isolates were newly identified in Korea: Sarocladium kiliense NNIBRFG3280 and Fusicolla merismoides NNIBRFG23708.

Characteristics of the Absorption of Cherry Tomato by the Application of Chelated Calcium and Germanium (킬레이트화 칼슘 및 게르마늄의 방울토마토 시용에 따른 흡수 특성)

  • Jang, Young-Hee;Lee, Seung-Hwan;Park, Young-Il;Lee, Kyu-Seung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.787-791
    • /
    • 2012
  • Bloods from slaughtered Korean native cattle (Hanwoo : Bos taurus coreanae) can be used in agriculture with various beneficial effects on the environment. This study was performed to find out the effect of the application of calcium and germanium, which are chelated with peptides made of cattle bloods on the absorption of them by cherry tomato (Lycopersicon esculentum Mill.). Peptide was purified by enzymatic hydrolysis and ultrafiltration from serum protein, which is composed of Asp, Glu, Lue etc. Chelated Ca and Ge were produced by reacting the peptide with $CaCl_2$ and Ge-$132^{(R)}$. Then, they were applied to cherry tomato during cultivation period at the rate of $300mL{\times}3times$ (10 days interval) for each tomato tree. Application of chelated-Ca increased the Ca contents in leaves and fruits of cherry tomato showing as 19.9% and 23.4% in newerly prepared chelated-Ca-200 ($200mg\;L^{-1}$), 8.1% and 6.8% in commecrial Calciolid Ca-300 ($300mg\;L^{-1}$) compared to 3152.6 and $63.2mg\;kg^{-1}$ in control, respectively. Application of chelated-Ge showed the increase in the germanium contents in both leaves and fruits of cherry tomato by over 6 times than those of control and over 4 times than Ge $132^{(R)}$-20 application. As a result of this study, it seemed that the application of chelated-Ca and chelated-Ge would be more effective than the existing commertial one in the absorption of calcium and germanium by cherry tomato.

Evaluating the Trapping Efficiency of Vegetative Buffer Systems on Sediment Reduction Using SWAT model (SWAT 모델을 이용한 수변 완충지역에서 비점오염원 저감효율 평가)

  • Kim, Ik-Jae;Son, Kyong-Ho;Kim, Jeong-Kon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1819-1823
    • /
    • 2007
  • 유역에서 상류 유역 또는 수변을 따라 자연 자원을 이용하여 조성되어야 할 완충지대는 비점오염의 영향을 줄이기 위한 중요한 최적 관리공법이다. 교란된 토지 피복과 수변 완충지대를 관리 및 복원할 때 같은 지형조건이라도 식생 종류, 발달정도, 토양조건에 따라 오염물 제거효과가 다를 수 있으며, 최소 완충지대 길이도 제거 오염물질 대상별로 적합하게 설계되고 해석되어야 한다. 본 연구의 목적은 용담댐 유역에서 SWAT 모델을 이용하여 식생 완충지대의 비점오염원 저감 모의 재현성을 평가하는 것이였다. 소유역의 관측값과 모델 예측값에 대한 모델의 검 보정이 선행되었으며 그 중에서 가장 높은 모델 효율을 가지는 소유역에서 three zone concept의 90m 수변완충지대를 지방하천을 경계로 하여 토지 피복도를 변화시켜 SWAT 모델에 적용하였다. 이 때 교목으로는 포플러 (Populus, 30m)을 적용하였고, 포플러의 높이 및 Leaf area index를 조정하여 관목 지대(30m)에 입력하였다. 잔디 지대(30m)는 자연초지를 선택하였다. 또한 지형변수(average slope)와 Manning's coefficient을 수변완충지대의 조건에 고려하여 변화를 주었고 이에 따른 유출량 및 유사량, T-N, T-P의 변화율을 조사하였다. 또한 5, 10, 30m의 식생 여과대를 밭 지역에만 적용하여 오염물의 저감 효율을 평가하였다. SWAT 모델은 각 소유역에서 발생된 전반적인 유출량과 수질변수의 추세를 잘 예측하였으며 정자천 소유역이 선택되었다. 모의된 완충지대에서는 연평균 940 m3/ha의 유출량이 감소되는 것으로 유사농도는 28.7 %의 저감효과를 보였다. 그러나 T-N, T-P의 농도는 오히려 증가되었는데 본 연구에서 고려된 보다 수변완충지대를 조성할 때 지하수 수위, 식생 성장변화 등과 같은 보다 정확한 설계 인자 산출 및 모델 DB 개발이 유역모델에 포함되어야 할 것으로 판단되었다.한 해결책을 얻어내는 상호보완적인 결과를 추구한다. 그가 디자인하는 작품은 전형적인 이미지를 내포하지 않는다. 즉 그의 작품은 기존의 가치와 이념적인 것은 배제하고, 창의적인 개념을 도출하였다.형모서리는 건물 특화 성격이 강하므로 불가피할 경우 소형 액센트 광고 위치를 미리 벽면으로 할애하는 것이 경관 및 입면계획에 유리한 것으로 분석되었다. 불확실도 해석모형 등의 새로운 기능을 추가하여 제시하였다. 모든 입출력자료는 프로젝트 단위별로 운영되어 data의 관리가 손쉽도록 하였으며 결과를 DB에 저장하여 다른 모형에서도 적용할 수 있도록 하였다. 그리고 HyGIS-HMS 및 HyGIS-RAS 모형에서 강우-유출-하도 수리해석-범람해석 등이 일괄되게 하나의 시스템 내에서 구현될 수 있도록 하였다. 따라서 HyGIS와 통합된 수리, 수문모형은 국내 하천 및 유역에 적합한 시스템으로서 향후 HydroInformatics 구현을 염두에 둔 특화된 국내 수자원 분야 소프트웨어의 개발에 기본 토대를 제공할 것으로 판단된다.았다. 또한 저자들의 임상병리학적 연구결과가 다른 문헌에서 보고된 소아 신증후군의 연구결과와 큰 차이를 보이지 않음을 알 수 있었다. 자극에 차이가 있지 않나 추측되며 이에 관한 추후 연구가 요망된다. 총대장통과시간의 단축은 결장 분절 모두에서 줄어들어 나타났으나 좌측결장 통과시간의 감소 및 이로 인한 이 부위의 통과시간 비율의 저하가 가장 주요하였다. 이러한 결과는 차가운 생수 섭취가 주로 결장 근위부를 자극하는 효과를 발휘하는 것이 아닌가 해석된다. 이와 같은 연구결과를 통해 생다시마를 주원료로 개발된 생다시마차와 생다시마 음료가 만성 기능성 변비 증세를 개선하는 효능이 잠재적으로 있음을 확인하였다. 그러나 생약제재의 변비약 수준으로 변비 개선 효능을 증대하기 위해서는 재료 배합비의 개선이나 대장 운동기능을 향상시키는 유효성분의 보강 등이 필요하다는 점도 알 수 있었다.더불어 산화물질 해독에 관

  • PDF

Rhizosphere Enhances Removal of Organic Matter and Nitrogen from River Water in Floodplain Filtration (홍수터 여과를 이용한 하천수의 질소와 유기물 제거에 미치는 근권의 효과)

  • Jeong, Byeong-Ryong;Chung, Jong-Bae;Kim, Seung-Hyun;Lee, Young-Deuk;Cho, Hyun-Jong;Baek, Nam-Joo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.1
    • /
    • pp.8-15
    • /
    • 2003
  • If contaminated river water is sprayed over a floodplain, the microbial processes can simultaneously remove organic matter and nitrogen during the infiltration through the sediment profile. The effect of rhizosphere on the removal of organic matter and nitrogen from contaminated river water was investigated using floodplain lysimeters. River water was sprayed at a rate of $68.0L\;m^{-2}\;d^{-1}$ on the top of the lysimeters with or without weed vegetation on the surface, Concentrations of $NO_3$, $NH_4$ and dissolved oxygen (DO), and chemical oxygen demand (COD) and Eh in water were measured as functions of depth for 4 weeks after the system reached a steady state water flow and biological reactions. A significant reductive-condition for denitrification developed in the 30-cm surface profile of lysimeters with weeds. At a depth of 30 cm, COD and $NO_3$-N concentration decreased to 5.2 and $0.9mg\;L^{-1}$ from the respective influent concentrations of 18.2 and $9.8mg\;L^{-1}$. The removal of $NO_3$ in lysimeters with weeds was significantly higher than in those without weeds. Vegetation on the top was assumed to remove $NO_3$ directly by absorption and to create more favorable conditions for denitrification by supply of organic matter and rapid $O_2$ consumption, In the lysimeters without weeds, further removal of $NO_3$ was limited by the lack of an electron donor, i.e. organic matter. These results suggest that the filtration through native floodplains, which include rhizospheres of vegetation on the surface, can be effective for the treatment of contaminated river water.

Stabilizing Soil Moisture and Indoor Air Quality Purification in a Wall-typed Botanical Biofiltration System Controlled by Humidifying Cycle (가습 주기에 따른 벽면형 식물바이오필터의 토양 수분 안정화 및 실내공기질 정화)

  • Lee, Chang Hee;Choi, Bom;Chun, Man Young
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.605-617
    • /
    • 2015
  • The ultimate goal of this research is to develop a botanical biofiltration system that combines a green interior, biofiltering, and automatic irrigation to purify indoor air pollutants according to indoor space and the size of biofilter. This study was performed to compare the stability of air flow characteristics and removal efficiency (RE) of fine dust within a wall-typed (vertical) botanical biofilter depending on humidifying cycle and to investigate RE of volatile organic compounds (VOCs) by the biofilter. The biofilter used in this experiment was designed as an integral form of water metering pump, water tank, blower, humidifier, and multi-level planting space in order to be suitable for indoor space utilization. As a result, relative humidity, air temperature, and soil moisture content (SMC) within the biofilter showed stable values regardless of three different humidifying cycles operated by the metering pump. In particular, SMCs were consistently maintained in the range of 27.1-29.7% during all humidifying cycles; moreover, a humidifying cycle of operating for 15 min and pausing for 45 min showed the best horizontal linear regression (y = 0.0008x + 29.09) on SMC ($29.0{\pm}0.2%$) during 120 hour. REs for number of fine dust (PM10) and ultra-fine dust (PM2.5) particles passed through the biofilter were in the range of 82.7-89.7% and 65.4-73.0%, respectively. RE for weight of PM10 passed through the biofilter was in the range of 58.1-78.9%, depending on humidifying cycle. REs of xylene, ethyl benzene, total VOCs (TVOCs), and toluene passed through the biofilter were in the range of 71.3-75.5%, while REs of benzene and formaldehyde (HCHO) passed through the biofilter were 39.7% and 44.9%, respectively. Hence, it was confirmed that the wall-typed botanical biofilter suitable for indoor plants was very effective for indoor air purification.

A Study on Infiltration Process and Physicochemical Influence in the Unsaturated and the Saturated Zone of the Bottom Ashes from Thermal Power Plant (화력발전소 배출 바닥재의 불포화대와 포화대 침투과정과 물리화학적 영향에 대한 연구)

  • Park, Byeong-Hak;Joun, Won-Tak;Ha, Seoung-Wook;Kim, Yongcheol;Choi, Hanna
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.97-109
    • /
    • 2022
  • This study focused on the physicochemical effects of bottom ash dissolved precipitation on the soil and groundwater environment. The iced column and percolation experiments showed that most of the bottom ash particles were drained as the ash-dissolved solution, while the charcoal powder was filtered through the soil. Ion species of Al, As, Cu, Cd, Cr, Pb, Fe, Mn, Ca, K, Si, F, NO3, SO4 were analyzed from the eluates collected during the 24 h column test. In the charcoal powder eluates, a high concentration of K was detected at the beginning of the reaction, but it decreased with time. The concentrations of Al and Ca were observed to increase with time, although they existed in trace amount. In the bottom ash eluates, the concentrations of Ca and SO4 decreased by 30 mg·L-1 and 67 mg·L-1, respectively, over 24 h. It is regarded that the infiltration patterns of the bottom ash and biochar in the unsaturated zone were different owing to their particle sizes and solvent properties. It is expected that a significant amount of the bottom ash will mix with the precipitation and percolate below the water table, especially in the case of thin and highly permeable unsaturated zone. The biochar was filtered through the unsaturated zone. The biochar did not dissolve in the groundwater, although it reached the saturation zone. For these reasons, it is considered that the direct contamination by the bottom ash and biochar are unlikely to occur.

Geochemical Equilibria and Kinetics of the Formation of Brown-Colored Suspended/Precipitated Matter in Groundwater: Suggestion to Proper Pumping and Turbidity Treatment Methods (지하수내 갈색 부유/침전 물질의 생성 반응에 관한 평형 및 반응속도론적 연구: 적정 양수 기법 및 탁도 제거 방안에 대한 제안)

  • 채기탁;윤성택;염승준;김남진;민중혁
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.103-115
    • /
    • 2000
  • The formation of brown-colored precipitates is one of the serious problems frequently encountered in the development and supply of groundwater in Korea, because by it the water exceeds the drinking water standard in terms of color. taste. turbidity and dissolved iron concentration and of often results in scaling problem within the water supplying system. In groundwaters from the Pajoo area, brown precipitates are typically formed in a few hours after pumping-out. In this paper we examine the process of the brown precipitates' formation using the equilibrium thermodynamic and kinetic approaches, in order to understand the origin and geochemical pathway of the generation of turbidity in groundwater. The results of this study are used to suggest not only the proper pumping technique to minimize the formation of precipitates but also the optimal design of water treatment methods to improve the water quality. The bed-rock groundwater in the Pajoo area belongs to the Ca-$HCO_3$type that was evolved through water/rock (gneiss) interaction. Based on SEM-EDS and XRD analyses, the precipitates are identified as an amorphous, Fe-bearing oxides or hydroxides. By the use of multi-step filtration with pore sizes of 6, 4, 1, 0.45 and 0.2 $\mu\textrm{m}$, the precipitates mostly fall in the colloidal size (1 to 0.45 $\mu\textrm{m}$) but are concentrated (about 81%) in the range of 1 to 6 $\mu\textrm{m}$in teams of mass (weight) distribution. Large amounts of dissolved iron were possibly originated from dissolution of clinochlore in cataclasite which contains high amounts of Fe (up to 3 wt.%). The calculation of saturation index (using a computer code PHREEQC), as well as the examination of pH-Eh stability relations, also indicate that the final precipitates are Fe-oxy-hydroxide that is formed by the change of water chemistry (mainly, oxidation) due to the exposure to oxygen during the pumping-out of Fe(II)-bearing, reduced groundwater. After pumping-out, the groundwater shows the progressive decreases of pH, DO and alkalinity with elapsed time. However, turbidity increases and then decreases with time. The decrease of dissolved Fe concentration as a function of elapsed time after pumping-out is expressed as a regression equation Fe(II)=10.l exp(-0.0009t). The oxidation reaction due to the influx of free oxygen during the pumping and storage of groundwater results in the formation of brown precipitates, which is dependent on time, $Po_2$and pH. In order to obtain drinkable water quality, therefore, the precipitates should be removed by filtering after the stepwise storage and aeration in tanks with sufficient volume for sufficient time. Particle size distribution data also suggest that step-wise filtration would be cost-effective. To minimize the scaling within wells, the continued (if possible) pumping within the optimum pumping rate is recommended because this technique will be most effective for minimizing the mixing between deep Fe(II)-rich water and shallow $O_2$-rich water. The simultaneous pumping of shallow $O_2$-rich water in different wells is also recommended.

  • PDF

Characteristic Assessment of Heavy Metals in Dusts Collected by the Air Filtration System at Subway Stations in Daegu, Korea (대구지역 지하철역사 공기여과필터 포집먼지에 함유된 중금속성분의 특성평가)

  • Do, Hwa-Seok;Song, Hee-Bong;Shin, Dong-Chan;Kwak, Jin-Hee;Lee, Myoung-Sook;Yoon, Ho-Suk;Kang, Hye-Jung;Phee, Young-Gyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.1
    • /
    • pp.42-50
    • /
    • 2009
  • Samples of subway dust were collected by the air filter system of 30 subway stations on Daegu subway line 1 in January 2008. Samples were sieved below 100 ${\mu}m$, and 14 elements were analyzed using ICP after acid extraction. Results obtained from the source assessment of trace elements using enrichment factor showed that Ca, Fe, K, Mg, Mn, Na, V were influenced by natural sources such as weathered rock and resuspended soil, while Cd, Cr, Cu, Ni, Pb and Zn were influenced by anthropogenic sources such as fuel combustion and waste incineration. Concentrations were remarkably higher in components from natural sources than in components from anthropogenic sources. Anthropogenic sources were significantly affected by indoor dusts than outdoor dusts. Results of pollution indices of heavy metals indicated that indoor dusts were more contaminated with heavy metal ions than outdoor dusts. The correlation analysis among trace elements indicated that components were much correlated in the order of natural sources-anthropogenic sources, anthropogenic sources-anthropogenic sources, natural sources-natural sources in both indoor and outdoor dusts. Trace element components of outdoor dusts were largely correlated than those of indoor dusts. In addition, indoor dusts were significantly affected by outdoor dusts rather than depth from the surface or the average daily number of subway passengers.