DOI QR코드

DOI QR Code

A Study on Infiltration Process and Physicochemical Influence in the Unsaturated and the Saturated Zone of the Bottom Ashes from Thermal Power Plant

화력발전소 배출 바닥재의 불포화대와 포화대 침투과정과 물리화학적 영향에 대한 연구

  • Park, Byeong-Hak (Disposal Performance Demonstration Research Division, Korea Atomic Energy Research Institute) ;
  • Joun, Won-Tak (The research Institute of Basic Sciences, Seoul National University) ;
  • Ha, Seoung-Wook (College of Natural Science, Seoul National University) ;
  • Kim, Yongcheol (Division of Climate Change Adaptation, Korea institute of Geoscience and mineral resources) ;
  • Choi, Hanna (Division of Climate Change Adaptation, Korea institute of Geoscience and mineral resources)
  • 박병학 (한국원자력연구원 처분성능실증연구부) ;
  • 전원탁 (서울대학교 자연과학대학 기초과학연구원) ;
  • 하승욱 (서울대학교 지구환경과학부 수리지구환경연구실) ;
  • 김용철 (한국지질자원연구원 지질환경연구본부 지하수연구센터) ;
  • 최한나 (한국지질자원연구원 지질환경연구본부 지하수연구센터)
  • Received : 2022.02.14
  • Accepted : 2022.02.26
  • Published : 2022.02.28

Abstract

This study focused on the physicochemical effects of bottom ash dissolved precipitation on the soil and groundwater environment. The iced column and percolation experiments showed that most of the bottom ash particles were drained as the ash-dissolved solution, while the charcoal powder was filtered through the soil. Ion species of Al, As, Cu, Cd, Cr, Pb, Fe, Mn, Ca, K, Si, F, NO3, SO4 were analyzed from the eluates collected during the 24 h column test. In the charcoal powder eluates, a high concentration of K was detected at the beginning of the reaction, but it decreased with time. The concentrations of Al and Ca were observed to increase with time, although they existed in trace amount. In the bottom ash eluates, the concentrations of Ca and SO4 decreased by 30 mg·L-1 and 67 mg·L-1, respectively, over 24 h. It is regarded that the infiltration patterns of the bottom ash and biochar in the unsaturated zone were different owing to their particle sizes and solvent properties. It is expected that a significant amount of the bottom ash will mix with the precipitation and percolate below the water table, especially in the case of thin and highly permeable unsaturated zone. The biochar was filtered through the unsaturated zone. The biochar did not dissolve in the groundwater, although it reached the saturation zone. For these reasons, it is considered that the direct contamination by the bottom ash and biochar are unlikely to occur.

화력발전소 연소부산물로 형성된 바닥재와 바이오차는 건식 매립 시 강수와 혼합되어 토양 하부로 침투할 가능성이 있다. 이 연구에서는 강수와 혼합된 바닥재 성분이 토양 및 지하수 환경에 미칠 수 있는 물리화학적 영향을 예측하고자 하였다. 아이스 칼럼 및 침투실험을 통해 미립자인 바닥재는 대부분 증류수에 용해되어 토출구로 배수되나, 바이오차(숯가루)는 매질에 여과되는 것을 시각적으로 관찰하였다. 칼럼 실험 용출액의 이온 분석(Al, As, Cu, Cd, Cr, Pb, Fe, Mn, Ca, K, Si, F, NO3, SO4) 결과, 숯가루 충진 칼럼은 K가 상당히 높은 농도(0.5 cm 충진 시 19.8 mg·L-1, 1 cm 충진 시 126 mg·L-1)로 검출되었으나 시간에 따라 점차 농도가 감소하였다. Al과 Ca는 미량으로 검출되었으나 시간에 따라 농도가 상승하는 것이 관찰되었다. 바닥재 충진 칼럼은 실험 초기부터 Ca와 SO4가 고농도로 검출되었으며 24시간 동안 각각 30 mg·L-1, 67 mg·L-1가 감소하였다. 연구 결과에 근거하여, 투수성이 좋고 포화대가 지표에 가까운 토양의 경우 오랜 시간 강수가 지속된다면, 상당량의 바닥재는 강수와 혼합되어 지하수면 아래로 침투할 수 있을 것으로 예상된다. 그러나 바이오차는 불포화대에서 걸러지며, 포화대에 도달하여도 지하수에 녹지 않아 직접적인 오염을 일으킬 가능성은 낮다고 여겨진다. 바닥재와 바이오차의 침투에 의한 토양 및 지하수 환경의 교란은 자연적 완충작용에 의해 보완되나, 실제 매립지는 대용량 고농도의 매질과 반응이 이뤄지므로 일반화를 위해서는 더욱 큰 규모의 연구가 필요할 것이다.

Keywords

Acknowledgement

이 연구는 한국지질자원연구원 '기후변화대응 대용량 지하수 확보 및 최적활용 기술개발(22-3411)', 사용후핵연료관리핵심기술개발사업단 및 한국연구재단의 과제(2021M2E1A1085200), 한국연구재단의 NRF-2018R1D1A1B07044596 과 2021R1C1C293498 과제의 지원을 받아 수행되었습니다. 연구에 도움을 주신 서울대학교 지구환경과학부의 이강근 교수님과 실험실 분들께 깊은 감사를 표합니다. 이 논문을 심사하고 세심한 조언을 나누어 주신 심사위원분들께 감사드립니다.

References

  1. Arriola, E., Chen, W.H., Chih, Y.K., De Luna, M.D. and Show, P.L. (2020) Impact of post-torrefaction process on biochar formation from wood pellets and self-heating phenomena for production safety. Energy, v.207, p.118324. doi: 10.1016/j.energy.2020.118324
  2. ASTM (2013) Standard Test Method for Column Percolation Extraction of Mine Rock by the Meteoric Water Mobility Procedure. ASTM Int.
  3. Behnood, A., Gharehveran, M.M., Asl, F.G. and Ameri, M. (2015) Effects of copper slag and recycled concrete aggregate on the properties of CIR mixes with bitumen emulsion, rice husk ash, Portland cement and fly ash. Construction and Building Materials, v.96, p.172-180. doi: 10.1016/j.conbuildmat.2015.08.021
  4. Blackwell, P., Riethmuller, G. and Collins, M. (2012) Biochar application to soil. In Biochar for environmental management (pp. 239-258). Routledge.
  5. Friedman, G.M. and Sanders, J.E. (1978) Principles of Sedimentology. Wiley, New York.
  6. Harter, T. (2003) Basic concepts of groundwater hydrology. UCANR Publications.
  7. Jones, D.R. and Goodarzi, F. (Ed.). (1995) The leaching of major and trace elements from coal ash. Netherlands: Kluwer Academic Publishers. doi: 10.1007/978-94-015-8496-8_12
  8. Kim, S.H., Yang, I. and Han, G.S. (2015). Effect of sawdust moisture content and particle size on the fuel characteristics of wood pellet fabricated with Quercus mongolica, Pinus densiflora and Larix kaempferi sawdust. Journal of the Korean Wood Science and Technology, v,43(6), p.757-767. doi: 10.5658/WOOD.2015.43.6.757
  9. KLIC (Korean Law Information Center) (2022) New Energy and Renewable Energy Development, Use, and Spread Promotion Law, Available at https://www.law.go.kr/ [Accessed Fabruary 13 2022].
  10. KOSIS (Korean statistical information service) (2022) Composition of power generation facilities by fuel source, Available at https://kosis.kr/index/index.do [Accessed Fabruary 13 2022].
  11. KMA (Korea Meteorological Adminstration) (2022) Climate information, Seoul, Available at https://www.weather.go.kr/w/index.do [Accessed Fabruary 13 2022].
  12. KOSTAT (Statistics Korea) (2022) Population and Population Density by Region, Available at http://www.index.go.kr/potal/stts/idxMain/selectPoSttsIdxMainPrint.do?idx_cd=1007&board_cd=INDX_001 [Accessed Fabruary 13 2022].
  13. Lee, G.S. (2011) A Study on the Feasibility of Co-Firing with Wood pellet in Bituminous Coal Thermal Power Plant. Keimyung University Publisher, Seoul.
  14. Lee, Y.R., Soe, J.T., Zhang, S., Ahn, J.W., Park, M.B. and Ahn, W.S. (2017) Synthesis of nanoporous materials via recycling coal fly ash and other solid wastes: A mini review. Chemical Engineering Journal, v.317, p.821-843. doi: 10.1016/j.cej.2017.02.124
  15. Lehmann, J. and Joseph, S. (2015) Biochar for environmental management: an introduction (pp. 33-46). Routledge.
  16. Lin, Y.L., Zheng, N.Y. and Hsu, C.H. (2021) Torrefaction of fruit peel waste to produce environmentally friendly biofuel. Journal of Cleaner Production, v.284, p.124676. doi: 10.1016/j.jclepro.2020.124676
  17. Maeng, J.H., Kim, T.Y. and Seo, D.H. (2014) Minimizing environmental impact in accordance with the thermal power plant ash management (I). Korea Environment Institute, v.24(5), p.472-486.
  18. Mattigod, S.V., Rai,D., Eary, L.E. and Ainsworth, C.C. (1990) Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: I. Review of the major elements. Journal of environmental quality, v.19(2), p.188-201. doi: 10.2134/jeq1990.00472425001900020004x
  19. ME (Ministry of Environment) (2010) Report on the regular inspection of domestic and imported coal ash heavy metals (First half of 2010), Seoul.
  20. NIER (National Institute of Environmental Research) (2011) Study on Environmental Impact of the mixed with coal ash and soil, No. 11-1480523-000821-01.
  21. Oh, J. (2006) Current Status for Resources Recycling in Korea. In Proceedings of the International Seminar on Mineral Processing Technology and Indo-Korean Workshop on Resource Recycling (MPT-2006) (Vol. 1, pp. 42-48). Allied Publishers.
  22. Park, B.H., Lee, B.H. and Lee, K.K. (2018) Experimental investigation of the thermal dispersion coefficient under forced groundwater flow for designing an optimal groundwater heat pump (GWHP) system. Journal of Hydrology, v.562, p.385-396. https://doi.org/10.1016/j.jhydrol.2018.05.023
  23. Park, K.B., Chae, B.G., Kim, K.S. and Park, H.J. (2011) Analysis of rainfall infiltration velocity for unsaturated soils by an unsaturated soil column test: comparison of weathered gneiss soil and weathered granite soil. Economic and Environmental Geology, v.44(1), p.71-82. doi: 10.9719/EEG.2011.44.1.071
  24. Park, S.G. and Kim, J.M. (2012) Present Status and Recycling Technology for Bottom Ash in Korea. Magazine of RCR, v.7(1), p.9-12. doi: 10.14190/MRCR.2012.7.1.009
  25. Reijnders, L. (2005) Disposal, uses and treatments of combustion ashes: a review. Resources Conservation and Recycling, v.43, p.313-336. doi: 10.1016/j.resconrec.2004.06.007
  26. Shun, D.W., Bae, D.H., Oh, C.S. and Kim, H.C. (2010) Circulating fluidized bed combustion of Korean anthracite and fabricated anthracite fines. Applied Chemistry for Engineering, v.21(5), p.553-558.
  27. Siddique, R. (2010) Utilization of coal combustion by-products in sustainable construction materials. Resources, Conservation and Recycling, v.54(12), p.1060-1066. doi: 10.1016/j.resconrec.2010.06.011
  28. Sohi, S. P., Krull, E., Lopez-Capel, E. and Bol, R. (2010). A review of biochar and its use and function in soil. Advances in agronomy, v.105, p.47-82. doi: 10.1016/S0065-2113(10)05002-9
  29. Song, Y., Kim, O., Park, S. and Lee, J. (2018) A Study on the Changes in Heavy Metal Emissions when Using Mixed Fuel in a Thermal Power Plant. Journal of Environmental Health Sciences, v.44(1), p.63-75. doi: 10.5668/JEHS.2018.44.1.63
  30. Yuanyuan, H. and Cho, H.C. (2019) The Research on the Relationship between Energy Consumption and Economic Development in China Based. The Review of Eurasian Studies, v.16(4), p.93-117. https://doi.org/10.31203/aepa.2019.16.4.005
  31. Zacco, A., Borgese, L., Gianoncelli, A., Struis, R.P.W.J., Depero, L.E. and Bontempi, E. (2014) Review of fly ash inertisation treatments and recycling. Environ Chem Lett v.12, p.153-175. https://doi.org/10.1007/s10311-014-0454-6