• Title/Summary/Keyword: 토석류

Search Result 347, Processing Time 0.022 seconds

Movement and Deposition Characteristics of Debris Flow According to Rheological Factors (유동학적 인자에 따른 토석류의 이동 및 퇴적 특성)

  • Lee, Mi-Ji;Kim, Yun-Tae
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.5
    • /
    • pp.19-27
    • /
    • 2013
  • Most of the landslides induced by rainfall in summer rainy season appear in the type of debris flow. Debris flow gives a lot of economic losses and human casualties due to high moving velocity and volume of debris flow. In order to analyze movement and deposition characteristics of debris flow, numerical analysis using FLO-2D program was conducted with various viscosities and yield stresses. As a result of numerical analysis, velocity and runout distance of debris flow decreased as its viscosity increased due to resisting force between particles of debris flow. Consequently, flow depth of debris flow increased and impact force decreased. Yield stress of debris flow affected its initiation and deposition characteristics. As yield stress increased, runout distance of debris flow decreased and its impact force increased. Based on the results of numerical analysis, it was found that velocity of debris flow mainly depended on viscosity, while deposition characteristics (runout distance, deposition width, deposition area) of debris flow depended on both viscosity and yield stress.

Study on the Numerical Simulation of Debris Flow due to Heavy Rainfall (집중 강우에 따른 토석류 유출의 수치계산)

  • Kim, Jung-Han;Min, Sun-Hong;Kang, Sang-Hyeok
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.389-395
    • /
    • 2009
  • In spite of many numerical analysis of debris flow, a little information has been found out. In this paper the watershed is divided to apply rainfall runoff and to estimate debris flow integrating flow and soil article. We use the contour data to extract spatially distributed topographical information like stream channels and networks of sub-basins. A Quasi Digital Elevation Model (Q-DEM) is developed, integrated, and adopted to estimate runoff based on marked one. As a results, it has been found out that the debris flow was close to observed flow hydrograph. Because debris flow is finished in 30 second, it is important that we have to prepare its prior countermeasure to minimize the damage of debris flow. The GIS-linked model will provide effective information to plan river works for debris flow.

  • PDF

Estimation of Spatial Soil Distribution Changed by Debris Flow using Airborne Lidar Data and the Topography Restoration Method (항공 Lidar 자료와 지형복원기법을 이용한 토석류 토사변화 공간분포 추정)

  • Woo, Choongshik;Youn, Hojoong;Lee, Changwoo;Lee, Kyusung
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.1
    • /
    • pp.20-27
    • /
    • 2012
  • The flowed soil volume is able to be estimated simply from topographic data of before and after the debris flow. However, it is often difficult to obtain high resolution topographic data before debris flow because debris flow was occurred in mountainous area and airborne Lidar data was mainly surveyed in urban area. For this reason, Woo(2011) developed the topographic restoration method that can reconstruct the topography before the debris flow using airborne Lidar data. In this study, we applied the topographic restoration method on Inje county, Bongwha county and Jecheon city, produced topography data before debris flow that RMSE is from 0.16 to 0.34 m. Also, a soil variation was analyzed by topography data before and after debris flow, and it was used to estimate a real soil volume flowed to downstream and a spatial distribution showing collapses, flows, sedimentations appeared to debris flow.

Analysis of influence factors on the construction of the check dam to reduce damage caused by debris flow (토석류 피해 저감을 위한 사방댐 설계 모의분석)

  • Lee, Seungjun;An, Hyunuk;Kim, Minseok;Ko, Heemin;Ku, Hyeonseung;Yu, Seungheon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.92-92
    • /
    • 2022
  • 산 사면의 지반이 붕괴되어 흙, 모래, 자갈 그리고 물 등이 혼합하여 유동하는 토석류는 예측과 대비가 어려운 자연재해 중 하나 이다. 특히, 강우로 인해 발생하는 토석류의 경우 매우 빠르게 유동하기 때문에 피해 예측이 제한적이다. 이러한 토석류가 도심지역 또는 마을주변에서 발생할 경우 많은 인명 및 재산 피해가 발생한다. 따라서 토석류의 유동을 최소화시키기 위해선 1차적으로 수치모형을 통한 전반적인 유동 및 피해 규모 예측이 이루어져야 하며, 이러한 분석을 바탕으로 사방댐과 같은 구조물의 효율적인 설계가 이루어져야 한다. 이에 수치모형을 통해 토석류의 유동을 분석하고자 하는 많은 연구가 진행된 바 있으며, 사방댐 설계 분석 또한 수치모형과 실험을 통해 연구된 바 있다. 선행연구들에 따르면, 1) 발생부로부터의 거리, 2) 토석류 에너지의 감소, 3) 침식-연행 작용, 4) 사방댐의 용량 등이 효율적인 사방댐 설계에 영향을 미친다고 분석된 바 있다. 하지만 위의 항목들에 대한 종합적인 비교분석은 미비한 실정이다. 따라서 본 연구에선 위에서 제시한 4가지의 항목들을 바탕으로 사방댐 설계에 중요한 요소를 평가하고 산정하고자 한다. 토석류의 유동과 사방댐을 모의분석하기 위해 Deb2D 수치모형을 활용하였으며, Voellmy 유변학적 모형과 침식-연행-퇴적 작용을 분석할 수 있는 알고리즘을 사용하여 토석류의 유동을 현실에 가깝게 모의하였다. 2011년 서울 우면산에서 발생한 산사태 유역들 중에서 래미안 아파트 유역과2019년 강원도 갈남리에서 발생한 산사태를 대상지구로 선정하였다. 연구 결과에 따르면 4가지 요소들 중에서 사방댐의 용량이 효율적인 사방댐 설계에 가장 주요한 요인으로 분석되었다.

  • PDF

Experimental Investigation of Effects of Sediment Concentration and Bed Slope on Debris Flow Deposition in Culvert (횡단 배수로에서 토석류 퇴적에 대한 유사농도와 바닥경사 영향 실험연구)

  • Kim, Youngil;Paik, Joongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.467-474
    • /
    • 2011
  • Debris flow is one of the most hazardous natural processes in mountainous regions. The degradation of discharge capacity of drainage facilities due to debris flows may result in damages of properties and casualty as well as road. Understanding and accurate reproducing flow behaviour of debris flows at various conditions, such as sediment volume concentration and approaching channel and culvert slopes, are prerequisite to develop advanced design criteria for drainage facilities to prevent such damages. We carried out a series of laboratory experiments of debris flows in a rectangular channel of constant width with an abrupt change of bottom slope. The experimental flume consists of an approaching channel part with the bed slope ranging $15^{\circ}$ to $30^{\circ}$ and the test channel with slope ranging from $0^{\circ}$ to $12^{\circ}$ which mimics a typical drainage culvert. The experiments have been conducted for 22 test cases with various flow conditions of channel slopes and sediment volume concentration of debris flows to investigate those effects on the behaviour of debris flows. The results show that, according to sediment volume concentration, the depth of debris flow is approximately 50% to 150% larger than that of fresh water flow at the same flow rate. Experimental results quantitatively present that flow behaviour and deposit history of debris flows in the culvert depend on the slopes of the approaching and drainage channels and sediment volume concentration. Based on the experimental results, furthermore, a logistic model is developed to find the optimized culvert slope which prevents the debris flow from depositing in the culvert.

Run-out Modeling of Debris Flows in Mt. Umyeon using FLO-2D (FLO-2D 모형을 이용한 우면산 토석류 유동 수치모의)

  • Kim, Seungeun;Paik, Joongcheol;Kim, Kyung Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.965-974
    • /
    • 2013
  • Multiple debris flows occurred on July 27, 2012 in Mt. Umyeon, which resulted in 16 casualties and severe property demage. Accurate reproducing of the propagation and deposition of debris flow is essential for mitigating these disasters. Through applying FLO-2D model to these debris flows and comparing the results with field observations, we seek to evaluate the performance of the model and to analyse the rheological model parameters. Representative yield stress and dynamic viscosity back-calculated for the debris flows in the northern side of Mt. Umyeon are 1022 Pa and 652 $Pa{\cdot}s$, respectively. Numerical results obtained using these parameters reveal that deposition areas of debris flows in Raemian and Shindong-A regions are well reproduced in 63-85% agreement with the field observations. However, the propagation velocities of the flows are significantly underestimated, which is attributable to the inherent limitations of the model that can't take the entrainment of bed material and surface water into account. The debris flow deposition computed in Hyeongchon region where the entrainment is not significant appears to be in very good agreement with the field observation. The sensitivity study of the numerical results on model parameters shows that both sediment volume concentration and roughness coefficient significantly affect the flow thickness and velocity, which underscores the importance of careful selection of these model parameters in FLO-2D modeling.

Application of LiDAR Data and Site Surveys of Damaged Field by Debris Flow Disaster (토석류 피해지 현장조사 및 LiDAR 자료의 활용)

  • Oh, Chae Yeon;Jun, Kye Won;Jun, Byong hee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.279-279
    • /
    • 2015
  • 최근 기후변화로 인해 이상기후 현상이 지속적으로 발생하고 있으며 이로 인해 산사태나 토석류와 같은 산재재해가 발생하여 인근 도심에까지 영향을 끼치고 있다. 본 연구에서는 해마다 빈번하게 발생하고 있는 산지 토사재해의 피해저감과 원인분석을 위하여 과거 강원도 인제군에서 발생한 산사태 및 토석류가 발생 현장을 조사하였고 발생유역의 특징을 분석하기 위해 GIS기법을 이용하여 기후, 지질, 지형, 토양 등의 공간자료를 구축하고 보다 정밀한 지형인자 추출을 위하여 지상 LiDAR를 활용하여 토석류 발생현장을 스캔하고 3D 지형자료를 구축하였다. 추후 공간자료와 3D지형자료를 활용하여 토석류 발생량 추적이나 확산 범위등 정밀 분석의 기초자료로 활용 될 것이다.

  • PDF

Modeling for Debris Flow Behavior on Expressway Using FLO-2D (FLO-2D를 이용한 고속도로에서의 토석류 거동 모델링)

  • Lim, Jae-Tae;Kim, Byunghyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.263-272
    • /
    • 2019
  • This study demonstrates the applicability of the FLO-2D for the influence analysis of the debris flow on expressway. To do this, the behavior of debris flow on the expressway was reproduced by applying the FLO-2D to actual generated debris flow. The study area is a part of the Deokyusan Service Area on the Daejon-Jinju Expressway, where traffic was blocked for 24 hours due to the debris flow in August 2005. Geographical analysis with GIS, hydrological analysis with HEC-HMS, and estimation of the amount of debris flow were carried out using field survey and soil property test data. Then, the optimum parameter combination of FLO-2D was selected through the parameter sensitivity analysis, and the behavior analysis of debris flow on expressway was applied. The comparison of the predictions with the observations shows the availability of FLO-2D for the behavior analysis of debris flow on the expressway.

GIS-Based Analysis of the Debris Flow Occurrence Possibility Using an Airborne LiDAR DEM around Pyeongchang-Gun, Kangwon-Do (항공라이다 DEM을 이용한 강원도 평창군 일원의 GIS 기반의 토석류 발생가능성 분석)

  • Lee, In-Ji;Lee, Dong-Ha;Suh, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.4
    • /
    • pp.50-66
    • /
    • 2010
  • In this study, we performed a GIS-based debris flow simulation using the high-resolution airborne LiDAR DEM in order to establish the effective and resonable debris prevention plans in Korea. To do so, we set a study area to an specific region over Pyeochang-gun in Kangwon-do which showed the extreme rugged distribution of topography and simulated a possibility of debris flow occurrence in this area using a GIS-based numerical simulation program which was developed by applying the finite difference method. After that, we also performed the debris flow simulation by SINMAP and geomorphic analysis method in the same region and compared each result with that of GIS-based debris simulation for verifying the reliability.

Estimation of Debris Flow Impact Forces on Mitigation Structures Using Small-Scale Modelling (모형축소실험을 이용한 토석류 방지시설 충격하중 평가)

  • Lee, Kyung-Soo;Cho, Seong-Ha;Kim, Jin-Ho;Yoo, Bo-Sun
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.191-205
    • /
    • 2017
  • We use small-scale modelling to estimate the impact ofrce of debris flows on erosion control dams (ECD) and ring nets. The results indicate that the viscoelastic debris flows produced impact forces of 4.14, 3.66, 1.66 kN from the bottom to the top of the ECD. Ring net tests produced a similar trend with generally smaller impact forces (2.28, 1.95, and 1.49 kN). Numerical analysis showed that the weight of the ECD (e.g., concrete retaining walls) provided resistance against the debris flow, whereas deformation of the ring net by elastic-elongation and aggregate penetration reduced the impact force by up to 45% compared with that of the ECD.