• Title/Summary/Keyword: 토목섬유 보강재

Search Result 90, Processing Time 0.036 seconds

Effects of Geofibers on Mechanical Properties of Composite Soils (혼합토의 역학적 특성에 미치는 Geofibers의 영향)

  • 전한용;정진교;변성원
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2002.04a
    • /
    • pp.85-88
    • /
    • 2002
  • 보강섬유란 지반구조물 중 토질재료 즉, 흙과 혼합되어 사용되는 토목용 합성섬유인 geofibers를 의미하며, 주로 흙의 응집력을 보강하는 기능을 가지고 있다. 일반적으로 토질재료는 비탄성 재료로써 약 5%정도의 변형에 파괴되는 역학적 성질을 가진 재료이며, 입자크기에 따라 그 적용범위가 매우 다양하다. 특히, 국내토양의 대부분을 차지하고있는 화강풍화토를 복토재로 사용할 경우 응집력이 약하여 지반구조물의 보강효과가 크게 떨어지는 문제점을 안고 있다. (중략)

  • PDF

Stability Analysis of Very Soft Soils Using Geotextiles: The Role of Model Test and Finite Element Analysis (토목섬유로 보강한 연약지반의 안정도 해석: 모형실험과 유한요소해석)

  • 고홍석;고남영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.1
    • /
    • pp.39-53
    • /
    • 1994
  • To investigate the behaviour of the embankment on very soft foundation reinforced geotex- files,the laboratory model test in order to analyze the elementary effects of geotextile reinfor- cement and the finite element program analyzing the stresses and deformations characteristics was carried out. A two-dimensional nonlinear finite element program called GEOTEXT(a modification of ISBILD) for the static analysis of embankment on very soft foundation reinforced geotextiles has been developed. Both linear and nonlinear hyperbolic stress-strain soil models are inclu- ded, and incremental and stage construction can be simulated. However, the program GEO- TEXT is not developed herein as an adaptable design tool for practicing engineer. It was found that the geotextile reinforcement significantly reduced the shear stresses in the foundation and decreased the vertical differential settlements at the top of the embank- ment. This influence was more pronounced as the tensile strength of the geotextile was increased.

  • PDF

Economic Evaluation on Geosynthetic Reinforced Abutment for Railways (토목섬유로 보강된 철도교대의 경제성 평가)

  • Kim, Dae Sang;Kim, Ung-Jin;Sung, Keun-Yeol;Kim, Hak-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.508-517
    • /
    • 2018
  • This study evaluated the construction costs of 11 design cases to decrease the horizontal forces applied to an abutment. They include two kinds of abutment types, which are used to improve the backfill materials for reversed T-shaped abutment and geosynthehtic reinforced abutment for railways (RAR). In the first economic analysis, the internal friction angles of the backfill materials were increased from ${\Phi}=35^{\circ}$ to ${\Phi}=40^{\circ}$ and $50^{\circ}$ for a reversed T-shaped abutment. The second analysis examined cases with the design of a geosynthehtic RAR. When the friction angles were $40^{\circ}$ or $50^{\circ}$ after improvement of the backfill material, the reduction in the construction cost of the abutment was not as large (2.0-3.9%), even though the horizontal forces on the abutment were decreased by 18-48%. However, in the case of applying the RAR, a maximum cost reduction of 30% was achieved by decreasing the horizontal force to zero. The cost reduction results from the decreased wall thickness, base slab size, and the number of pile foundations for the abutment, as well as changing the material.

Pilot Study on the Shear Strengthening Effect of Concrete Members Reinforced by Kagome Truss (카고메 트러스로 보강한 콘크리트 부재의 전단 보강효과에 관한 기초 연구)

  • Kim, Woo;Kang, Ki-Ju;Lee, Gi-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.237-244
    • /
    • 2012
  • There is mounting recognition among concrete researchers that fiber reinforcement makes up for the inherent weakness in resisting tensile force of structural concrete. In practice of application of the fiber to concrete, however, several problems still remain to solve for assuring a uniform mix quality. The Kagome truss that is widely used in mechanical engineering field seems to be a good replacement for the steel fiber. This paper presents the test results of a pilot study for the concrete members reinforced by Kagome truss which is a periodic cellular metal of wire-woven. Three types of Kagome truss bulk were prefabricated and filled with normal concrete to make small-scaled test beams. The beams reinforced by a normal steel stirrups were also tested up to failure to compare the behavioral results. From the results obtained, it is appeared that comparing with beams reinforced by normal stirrups, the beams reinforced by Kagome truss showed better performance in load carrying capacity as well as ductility. Therefore, the Kagome truss is proved to be a good web shear reinforcing material.

An Experimental Study on Bond Characteristics of FRP Reinforcements with Various Surface-type (다양한 표면형상에 따른 FRP 보강재의 부착특성 실험연구)

  • Jung, Woo Tai;Park, Young Hwan;Park, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.279-286
    • /
    • 2011
  • FRP (Fiber Reinforced Polymer) tendons can be used as an alternative to solve the corrosion problem of steel tendons. Material properties of FRP tendons-bond strength, transfer length, development length-must be determined in order to apply to concrete structures. First of all, in case of application for pretension concrete members with CFRP tendons, transfer length is an important characteristic. The bond of the material characteristics should be demanded clearly to apply to PSC structures prestressed with FRP tendons. This paper investigated on the bond characteristics of FRP reinforcements with various surface-type. To determine the bond characteristics of FRP materials used in place of steel reinforcement or prestressing tendon in concrete, pull-out testing suggested by CAN/CSA S806-02 was performed. A total of 40 specimens were made of concrete cube with steel strands, deformed steel bar and 6 different surface shape FRP materials like carbon or E-glass. Results of the bonding tests presented that each specimen showed various behaviors as the bond stress-slip curve and compared with the bond characteristic of CFRP tendon developed in Korea.

Unconfined Compressive Strength of Cemented Sand Reinforced with Short Fibers (단섬유를 사용한 시멘트 혼합토의 일축압축강도 특성)

  • Park, Sung-Sik;Kim, Young-Su;Choi, Sun-Gyu;Shin, Shi-Eon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.213-220
    • /
    • 2008
  • A study on cemented sand reinforced with short fibers was carried out to improve its unconfined compressive strength and brittle behavior. Nak-dong River sand was mixed with Portland cement and polyvinyl alcohol (PVA) fibers. A PVA fiber widely used for concrete reinforcement is randomly distributed into cemented sand. Nak-dong River sand, cement and fibers with optimum water content were compacted in 5 layers and then cured for 7 days. The effect of fiber reinforcement rather than cementation was emphasized by using a small amount of cement. Weakly cemented sand with a cement/sand ratio less than 8% was fiber-reinforced with different fiber ratios and tested for unconfined compression tests. The effect of fiber ratio and cement ratio on unconfined compressive strength was investigated. Fiber-reinforced cemented sand with 2% cement ratio showed up to six times strength to non-reinforced cemented sand. Because of ductile behavior of fiber-reinforced specimens, an axial strain at peak stress of specimens with 2% cement ratio increases up to 7% as a fiber ratio increases. The effect of 1% fiber addition into 2% cemented sand on friction angle and cohesion was analyzed separately. When the fiber reinforcement is related to friction angle increase, the 8% of applied stress transferred to 1% fibers within specimens.

Bearing Capacity of Soft Ground Reinfoced by Geosynthetics and Sand Mat (토목섬유와 SANDMAT로 보강한 지반의 지지력 연구)

  • Ju, Jae-Woo;Park, Jong-Beom;Seo, Kyeh-Won;Jang, Min-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • In order to improve the bearing capacity of soft ground for the purpose of getting a trafficability of construction vehicles, the geosynthetics-sandmat system has often been used. Yamanouchi had proposed the equation of calculating the bearing capacity about this kind of bearing mechanism, which has a soft ground-geosynthetics-sandmat system. The bearing capacity equation by Yamanouchi has been widely using in our country. However this equation includes an important contradictory concept because if the contact width of vehicles is incresed to reduce the contact pressure, the bearing capacity is decresed on the contray according to this equation. In order to investigate this contradictory concept, the bearing capacity test has been performed on the soft model ground with geosynthetics-sandmat system. From the test results about various kinds of models, the principle that explain the contradictory concept has been found and on the basis of this principle the new bering capacity equation has been proposed by modifying Yamanouchi equation.

  • PDF

An Experimental Study for Flexural Failure Behavior of Composite Beam with Cast-in-place High Strength Concrete and GFRP Plank Using As a Permanent Formwork and Tensile Reinforcement (유리섬유강화폴리머 판을 영구거푸집 및 인장 보강재로 활용한 현장타설 고강도콘크리트 합성보의 휨 파괴거동에 관한 실험적 연구)

  • Um, Chan Hee;Yoo, Seung Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1015-1024
    • /
    • 2015
  • An experiment of composite beam was performed which utilized glass fiber reinforced polymer (GFRP) plank as the permanent formwork with cast-in-place high strength concrete. This research analyzed the flexural failure behavior of composite beam by setting the sand coated at GFRP bottom surface, the perforation and interval of the GFRP plank web, and the width of the top flange as the experimental variables. As a result of the experiments for effectiveness of sand attachment in case of not perforated web, approximately 43% higher ultimate load value was obtained when the sand was coated than not coated case. For effectiveness of perforation and interval of gap, approximately 23% higher maximum load value was seen when interval of the perforation gap was 3 times and the fine aggregate was not coated, and approximately 11% higher value was observed when the perforation gap was 5 times on the coated specimen. For effectiveness of top flange breadth, the ultimate load value was approximately 12% higher in case of 20mm than 40mm width.

Comparative Study on the Flexural Performance of Concrete Reinforced with Polypropylene and Steel Fibers (폴리프로필렌 및 강섬유 보강콘크리트의 휨 성능에 관한 비교 연구)

  • Cho, Baiksoon;Lee, Jong-Han;Back, Sung Yong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1677-1685
    • /
    • 2014
  • Short discrete fibers compounded with concrete can enhance the tensile resistance and ductility of concrete. Recently, the effectiveness of the reinforcement has increased according to the increasing length of steel fiber. However, the lengthening of steel fiber requires reducing the ratio of the fiber content to remain the workability and quality of concrete. Thus, the present study evaluated the flexural performance of fiber reinforced concrete with less than l.0% fiber volume ratios of steel fiber, 30mm and 60mm long, and polypropylene fiber, being evaluated as a good reinforcing material with chemical stability, long-term durability, and cost effectiveness. Concrete with more than 0.25% steel and 0.5% polypropylene fibers improved the brittle failure of concrete after reaching cracking strength. Concrete reinforced with polypropylene exhibited deflection-softening behavior, but that with more than 0.5% polypropylene delayed stress reduction and recovered flexural strength by 60 to 80% after cracking strength. In conclusion, concrete reinforced with more than 0.75% polypropylene could improve structural flexural performance. In particular, energy absorption capacity of reinforced concrete with 1.0% polypropylene fiber was similar to that with 0.5% and 0.7% steel fibers.

Long-Term Behavior of Geogrid Reinforced Soil Abutment - A Numerical Investigation (지오그리드 보강토 교대의 장기거동에 관한 수치해석 연구)

  • Yoo, Chung-Sik;Jeon, Han-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.65-76
    • /
    • 2011
  • This paper presents the results of a numerical investigation on the long-term behavior of geosynthetic reinforced soil abutment. The investigation was carried out aiming at identifying the governing mechanisms of the long-term deformation of geosynthetic-reinforced soil abutment subjected to sustained loads during service life. A numerical modeling strategy was first established using the Singh-Mitchell creep model and the power law model, respectively, for the backfill and the geosyntehtic reinforcement. A parametric study on the creep properties of the backfill and the geosynthetic reinforcement was then conducted. The results indicated that a geosynthetic reinforced soil structure backfilled with marginal soil may exhibit substantial long-term deformation due to the creep effects caused by both the backfill soil and the geosynthetic reinforcement, the magnitude of which depends largely on the creep properties. This paper highlights the importance of considering the creep effect on load supporting geosynthetic reinforced soil structures when the long-term serviceability requirement is of prime importance.