• Title/Summary/Keyword: 텐던 배치

Search Result 22, Processing Time 0.019 seconds

Effect of the Prestressing Tendon Arrangement in the Wall of Circular Storage Tank (원형탱크 구조물 벽체의 텐던 배치에 대한 고찰)

  • 전세진;정철헌;진병무
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.759-765
    • /
    • 2002
  • Prestressing tendons in the wall of circular storage tank are investigated from the viewpoint of equivalent load method. Special attention is paid to the effectiveness of eccentricities of the hoop and vertical tendons. Local effect at the bent Point of vertical tendon in the wall with varying thickness is examined. Some aspects which are frequently overlooked or misinterpreted in the conventional analyses of vertical tendons are discussed. Numerical examples are presented to emphasize the significance of accurate analysis of the vortical tendon in practice. It is expected that the equivalent load method can be effectively used to simplify the analysis of tendons in the circular wall and to minimize the errors.

Axisymmetric Modeling of Dome Tendons in Nuclear Containment Building I. Theoretical Derivations (원전 격납건물 돔 텐던의 축대칭 모델링 기법 I. 이론식의 유도)

  • Jeon Se-Jin;Chung Chul-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.521-526
    • /
    • 2005
  • Prestressing tendons in a nuclear containment building dome are non-axisymmetrically arranged in most cases. However, simple axisymmetric modeling of the containment has been often employed in practice to estimate structural behavior for the axisymmetric loadings such as an internal pressure. In this case, the axisymmetric approximation is required for the actual tendon arrangements in the dome. Some procedures are proposed that can implement the actual 3-dimensional tendon stiffness and prestressing effect into the axisymmetric model. Prestressing tendons, which are arranged in 3 or 2-ways depending on a containment type, are converted into an equivalent layer to consider the stiffness contribution in meridional and hoop directions. In order to reflect the prestressing effect, equivalent load method and initial stress method are devised and the corresponding loads or stresses are derived in terms of the axisymmetric model. In a companion paper, the proposed schemes are applied into CANDU and KSNP(Korean Standard Nuclear Power Plant) type containments and are verified through some numerical examples comparing the analysis results with those of the actual 3-dimensional model.

A Study of the Tendon Profile of a PSC Continuous Beam Able to Resist the Negative Bending Moment of Continuous Intergirders (거더 연속부의 부모멘트 제어에 효과적인 PSC 연속보의 텐던 배치에 관한 연구)

  • Kim, Eui Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.617-625
    • /
    • 2021
  • The problems associated with the continuous method of a domestically improved prestressed concrete (PSC) girder and the bending moment of a continuous tendon were studied. Based on the results, a continuous tendon model was proposed that can resist the negative bending moment of an intergirder. This model lowers the anchorage of the continuous tendon as far as possible under the girder, and extends the tendon section arranged under the girder. This method reduces the PS's bending moment in the middle of the span, but maximizes it in the intergirder. This continuous tendon model can offer a suitable method for continuity before manufacturing a composite, which requires a higher design bending moment in the intergirder than in the middle of the span.

Analysis of the Linear Transformation of Prestressing Tendon Using Equivalent toad Method (등가하중법 관점에서 분석한 프리스트레싱 텐던의 직선이동)

  • 오병환;전세진
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.6
    • /
    • pp.843-850
    • /
    • 2002
  • Linear transformation theory has been effectively used in the design and analysis of prestressed concrete structures. The underlying assumptions of the theory, which were often overlooked, are investigated in the respect of equivalent load method. As a result, it is found that the same equivalent loading system is produced for all the cases of the linear transformation by the assumptions of the conventional equivalent load method. On the other hand, equivalent loading systems in a strict and accurate sense do not satisfy the classical theories of the linear transformation. Also, it is shown that a little different equivalent loading system from the conventional one is obtained for each linear transformation according to the proposed equivalent load method that is derived from the self-equilibrium property of the tendon-induced forces. Therefore, it can be concluded that the linear transformation theory is valid only when referring to the conventional approximate equivalent load method. The discussions are further extended to the eccentrically located circumferential tendon in the wall of containment structures, where the problem of eccentricity is analyzed also from the view point of the linear transformation.

Axisymmetric Modeling of Dome Tendons in Nuclear Containment Building II. Verification through Numerical Examples (원전 격납건물 돔 텐던의 축대칭 모델링 기법 II. 수치예제를 통한 검증)

  • Jeon Se-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.527-533
    • /
    • 2005
  • Axisymmetric modeling of the nuclear containment building has been often employed in practice to estimate structural behavior for the axisymmetric loadings, where the axisymmetric approximation is required for the actual non-axisymmetric tendon arrangements in the dome. In the preceding companion paper, some procedures are proposed for the domestic CANDU and KSNP type containments that can implement the actual 3-dimensional tendon stiffness and prestressing effect into the axisymmetric model. In this paper, the proposed schemes are verified through some numerical examples comparing the results of the actual 3-dimensional model with those of some axisymmetric models. The results of the proposed axisymmetric analyses show relatively good agreements with the actual structural behavior especially for the CANDU type. Also, it is shown that proper level of the prestressing in a hoop direction plays an important role to predict the actual prestressing effect in the axisymmetric dome modeling. Finally, correction factors are discussed that can revise some approximations introduced in the derivations.

A Study on the Optimum Cross-section and Tendon Profiles of 60 m span Half-Decked PSC Girder Bridge (Half-Deck을 포함한 60 m 경간 PSC 거더의 단면 및 텐던 프로파일 최적화 연구)

  • Kim, Tae Min;Kim, Do-Hak;Kim, Moon Kyum;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6A
    • /
    • pp.417-424
    • /
    • 2011
  • This study focused on development of 60 m span PSC girder considering not only structural performance, but also economical efficiency and constructability including from the improvement of cross-section to the tendon profiles in sequence. Bulb-T type cross section was derived from optimization and actual possibilities to design a bridge were assessed through cross section evaluation. Tendons were also arranged efficiently so that the girder could resist the service load effectively. After developed girder was applied to a sample bridge, result of finite element analysis proved all load steps were satisfied with the allowable stress. Furthermore, it seemed that sufficient redundancy will be available to design a bridge safely. Based on these, a full-scale 60 m span girder was fabricated and 4 point bending test was performed. An initial crack occurred over twice of the service load in this experiment, which establishes adequate structural performance. 60 m span Half-Decked PSC girder developed in this study has a lower height for the given span which resulted from cross section improvement and efficient tendon layout. This girder also has not only the structural advantage, but also advantages in economical efficiency and constructability.

Experimental Study on Segregated Layers of Materials and Compressive Strength of Concrete for Pretensioned Spun High Strength Concrete Pile (PHC 파일의 압축강도와 재료분리층에 대한 실험연구)

  • 이성로;강성수;유성원
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.1
    • /
    • pp.16-22
    • /
    • 2001
  • Pretensioned spun high strength concrete (PHC) pile has to be quality-controlled and provided an adequate concrete cover to assure high load carrying capacity, impact resistance, economy, and durability. During spun pre-casting, the pile section is divided into several segregated layers such as laitance, paste, mortar, and concrete layers. Greater the thickness of segregated layers, more difficult it is to guarantee the capacity and the durability of PHC pile. The experimental study was performed to investigate the effects of centrifugal condition on the segregated layers of materials and the compressive strength of concrete for PHC pile. The considering factors in the test were centrifugal time and magnitude of centrifugal force. These factors have been found to have greater influence on the segregation than the concrete strength. The moderate centrifugal condition has to be considered to maintain quality assurance in the production of PHC pile, especially to provide the adequate concrete cover over its tendons.

Estimation of Initial Tensile Force Acting on Tendon using the Deformation of a Multi-tendon Anchor Head (멀티 텐던 앵커헤드의 변형을 이용한 텐던의 초기 긴장력 추정)

  • Park, Jang Ho;Cho, Jeong-Rae;Park, Jaegyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.581-588
    • /
    • 2014
  • The PSC bridges have recently been widely used in Korea. The PSC bridge is a structure whose performance is improved through the use of tendons and steel bars in deflection and cracking characteristics of the concrete. Therefore, measurement or estimation of the load acting on tendon is important in order to maintain the PSC bridges efficiently and safely. This paper deals with a numerical study on the deformation of a multi-tendon anchor head in order to verify the relationship between the load acting on tendon and the deformation of anchor head. All kinematics, material properties and contact nonlinearity are included for the precise analysis and numerical studies are performed by Abaqus. From the numerical results, it is verified that the hoop strain is most useful in the estimation of the load acting on tendon and strains are affected by various parameters such as friction coefficient, boundary conditions, and arrangement.

Effects of Load Carrying Capacity with Method of Application of Prestress on Long-Span Temporary Bridges (장지간 가설교량에서 프리스트레스의 도입방법과 텐던배치에 따른 내하력의 영향)

  • Sim, Jai-Hyun;Park, Jeong-Ung;Park, Kil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.6
    • /
    • pp.1275-1280
    • /
    • 2009
  • In recent bridge design, studies on application of external prestress have actively been conducted. When prestress is applied to steel structures, the limit value of elastic strain with large load increases with reduction of steels, this method is economic in cost. According to study by Brodka (1969), steel plate bridges with prestress has an effect on cost saving of about 15% compared with structures without prestress. For that reason, our country recently adopted this method in construction of temporary bridges and various engineering technologies have been developed which made stress correction, droop correction and long-span construction possible with relatively small cross sections. This study verifies the method of application of prestress in temporary steel structures, the influence of high-strength tendon arrangement and the effects of composite structures of steel plates and high-strength tendons based on existing method.

Anchorage Zone Behavior and Analysis of Precast Prestressed Concrete Box-Girder Bridges (프리캐스트 프리스트레스트 콘크리트(PC) 박스거더 교량의 정착부 거동 및 해석)

  • 오병환;임동환;이명규;백신원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.36-41
    • /
    • 1994
  • 프리캐스트 프리스트레스트 콘크리트 상자형 교량의 정착부에 프리스트레스 힘이 도입되면, 과다한 국부집중 하중으로 인하여 균열이 발행할 수 있으며, 최근 이러한 교량의 건설시 텐던을 따라가며 심각한 균열이 발생한 경우가 있다. 본 논문은 프리캐스트 프리스트레스트 콘크리트 상자형 교량의 정착부에 발생하는 국부집중 응력의 분포 특성을 규명하고, 이를 토대로 파괴기구 고찰함에 목적이 있다. 이를 위하여 정착부 파괴에 직접적인 영향을 미치는 단면의 형상, 텐던의 배치상태, 국부보강 철근의 형태 및 구조보강 철근량 등을 변수로 하는 역학적 거동 실험 및 해석 연구가 수행되었다. 위의 실험 및 해석연구결과 정착부 파괴양상이 규명되었으며, 프리스트레스 정착부의 새로운 파괴기구 개념이 제시되어, 정착부 파괴과정을 적절히 설명하고 있다.

  • PDF