• Title/Summary/Keyword: 텍스트 연구

Search Result 3,471, Processing Time 0.034 seconds

Study of Analysis for Autonomous Vehicle Collision Using Text Embedding (텍스트 임베딩을 이용한 자율주행자동차 교통사고 분석에 관한 연구)

  • Park, Sangmin;Lee, Hwanpil;So, Jaehyun(Jason);Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.1
    • /
    • pp.160-173
    • /
    • 2021
  • Recently, research on the development of autonomous vehicles has increased worldwide. Moreover, a means to identify and analyze the characteristics of traffic accidents of autonomous vehicles is needed. Accordingly, traffic accident data of autonomous vehicles are being collected in California, USA. This research examined the characteristics of traffic accidents of autonomous vehicles. Primarily, traffic accident data for autonomous vehicles were analyzed, and the text data used text-embedding techniques to derive major keywords and four topics. The methodology of this study is expected to be used in the analysis of traffic accidents in autonomous vehicles.

Topic Analysis of the "Right to be Forgotten" Using Text Mining (텍스트마이닝을 활용한 "잊힐 권리"의 토픽 분석)

  • Lee, So-Hyun;Koo, Bon-Jin
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.2
    • /
    • pp.275-298
    • /
    • 2022
  • This study examined the issues and characteristics that appeared in news and journal articles related to the 'right to be forgotten' using text mining analysis. Data for analysis were collected from 2010 to 2020 with the keyword 'right to be forgotten'. Keyword analysis and topic modeling analysis were performed on the collected data. As a result, in the last 10 years the issues about 'right to be forgotten' are not much different in news and journal articles and the approaches also are similar. However, it confirmed common issues and the partial difference between news and journal articles through comparison. Therefore in Archives and Records Management Studies, it is necessary to discuss derived in this study. In particular common issues are considered first but if there are differences in issues, it is needed to discuss them in various ways. This study is meaningful to understand the meaning and to draw issues that may arise in the future of the 'right to be forgotten'. The results of this study will contribute to be variously discussed on the 'right to be forgotten' in Archives and Records Management Studies.

A Study on the Direction of Development of Related Policies with Game-related Issue Analysis: Using Text Mining and Spline Function Analysis of Newspaper Articles (게임 관련 이슈 분석을 통한 관련 정책 발전 방향에 관한 연구: 운형함수와 텍스트마이닝 분석을 활용하여)

  • Jang, You-mi;Yoo, Han-byeol
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.513-528
    • /
    • 2022
  • The purpose of this study is to analyze Korean game-related issues and policies to increase the effectiveness of related policies in the future and to increase the consistency of social norms of the policies. this study analyzes related issues by analyzing changes in Korean newspaper articles using spline function and text mining methods, and analyzes the contents of newspaper articles at the time of amplification of issues to present major issues and development directions. As a result of the analysis, game-related issues appeared in various topic, and there are not only support from the government and local governments but also coexisted with game-related regulations (taxation, gambling regulations, game addiction disease, and prevention of fee expansion). Despite regulations, the government presents preemptive responses to problems caused by the application of metabuses and NFTs to games, fostering game-related experts, start-up support, and supporting manpower departure as policy implications.

Social perception of the Arduino lecture as seen in big data (빅데이터 분석을 통한 아두이노 강의에 대한 사회적 인식)

  • Lee, Eunsang
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.935-945
    • /
    • 2021
  • The purpose of this study is to analyze the social perception of Arduino lecture using big data analysis method. For this purpose, data from January 2012 to May 2021 were collected using the Textom website as a keyword searched for 'arduino + lecture' in blogs, cafes, and news channels of NAVER website. The collected data was refined using the Textom website, and text mining analysis and semantic network analysis were performed by opening the Textom website, Ucinet 6, and Netdraw programs. As a result of text mining analysis such as frequency analysis, TF-IDF analysis, and degree centrality it was confirmed that 'education' and 'coding' were the top keywords. As a result of CONCOR analysis for semantic network analysis, four clusters can be identified: 'Arduino-related education', 'Physical computing-related lecture', 'Arduino special lecture', and 'GUI programming'. Through this study, it was possible to confirm various meaningful social perceptions of the general public in relation to Arduino lecture on the Internet. The results of this study will be used as data that provides meaningful implications for instructors preparing for Arduino lectures, researchers studying the subject, and policy makers who establish software education or coding education and related policies.

How National Water Management Plans lead Hydrological Survey Projects? (텍스트 마이닝을 이용한 국가 물관리 정책 변화 시점별 수문조사사업의 방향 분석)

  • Chan Woo Kim;Min Kuk Kim;Jung Hwan Koh;Seung Won Han;In Jae Choi;Dong Ho Hyun;Seok Geun Park
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.429-429
    • /
    • 2023
  • 우리나라의 물 관련 정책 방향이 환경 중심의 수자원 관리에서 친수공간 및 정보의 확보와 같은 안전한 물관리로 확대되면서 정책추진에 기초가 될 수 있는 신뢰도 높은 수문자료의 생산이 보다 중요시되고 있다. 국가 수문조사사업은 이러한 정책기조에 맞춰 제도적인 뒷받침과 함께 조사의 범위와 기술, 품질관리 등의 영역을 넓히며 그 기능을 활발히 하고 있으나, 물관리 정책의 경향에 따른 수문조사사업의 방향성과 특징을 구조적으로 살펴본 연구는 부족한 것으로 파악된다. 따라서 본 연구는 친수·친환경적 물관리가 강조된 시기('97~현재)를 중점으로 하여 물관리 정책과 관련 계획의 변화가 수문조사사업에 어떠한 영향을 주는지 고찰하였다. 이를 위해 물관리 여건의 변화에 따라 달라진 관련 정책별 주제어의 분포와 수문조사사업과 연관된 주요어의 출현빈도 및 경향을 살펴보고, 주요 연관어와 연계한 사업의 방향과 구조를 분석하였다. 분석자료로는 물관리 관련 법령 등의 제도와 언론기사자료, 정책별 추진방향을 활용하였다. 정책의 추진방향은 1) 수자원의 종합적 개발에서 친환경적 측면과 지속가능성이 강조된 수자원장기종합계획(3-1차~4-3차)과 2) 사람과 자연이 함께 고려된 맑고 안전한 물, 통합물관리 등의 전략이 수록된 국가물관리기본계획(1차), 3) 정책의 기조에 따라 수립 및 보완된 수문조사 기본계획(1~2차)을 바탕으로 하였다. R프로그램을 통한 텍스트 마이닝을 활용하여 각 자료에서의 주제어 분포와 출현빈도를 분석하고, 정책별 추진방향과 수문조사사업의 연계성을 나타내었다. 연구의 함의를 담은 결과로서 물관리 여건이 변화된 시점별 주요연관어를 중심으로 한 정책동향과 수문조사사업의 특징 및 방향을 요약·비교하여 제시하였으며, 이는 물관리 분야에서의 국정운영 목표와 연계하여 국가 수문조사사업의 사업성을 고찰하는 연구의 기반이 될 수 있으리라 생각된다.

  • PDF

Identifying Consumer Response Factors in Live Commerce : Based on Consumer-Generated Text Data (라이브 커머스에서의 소비자 반응 요인 도출 : 소비자 생성 텍스트 데이터를 기반으로)

  • Park, Jae-Hyeong;Lee, Han-Sol;Kang, Ju-Young
    • Informatization Policy
    • /
    • v.30 no.2
    • /
    • pp.68-85
    • /
    • 2023
  • In this study, we collected data from live commerce streaming. Streamimg data were then categorized based on the degree of chatting activation, with the distribution of text responses generated by consumers analyzed. From a total of 2,282 streaming data on NAVER Shopping Live -which has the largest share in the domestic live commerce market- we selected 200 streaming data with the most active viewer responses and finally chose the streams that had steep increase or decrease in viewer responses. We synthesized variables from the existing literature on live commerce viewing intentions and participation motivations to create a table of variables for the purpose of the study. Then we applied them with events in the broadcast. Through this study, we identified which components of the broadcast stimulate the variables of consumer response found in previous studies, moreover, we empirically identified the motivations of consumers to participate in live commerce through data.

Exploration on Tokenization Method of Language Model for Korean Machine Reading Comprehension (한국어 기계 독해를 위한 언어 모델의 효과적 토큰화 방법 탐구)

  • Lee, Kangwook;Lee, Haejun;Kim, Jaewon;Yun, Huiwon;Ryu, Wonho
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.197-202
    • /
    • 2019
  • 토큰화는 입력 텍스트를 더 작은 단위의 텍스트로 분절하는 과정으로 주로 기계 학습 과정의 효율화를 위해 수행되는 전처리 작업이다. 현재까지 자연어 처리 분야 과업에 적용하기 위해 다양한 토큰화 방법이 제안되어 왔으나, 주로 텍스트를 효율적으로 분절하는데 초점을 맞춘 연구만이 이루어져 왔을 뿐, 한국어 데이터를 대상으로 최신 기계 학습 기법을 적용하고자 할 때 적합한 토큰화 방법이 무엇일지 탐구 해보기 위한 연구는 거의 이루어지지 않았다. 본 논문에서는 한국어 데이터를 대상으로 최신 기계 학습 기법인 전이 학습 기반의 자연어 처리 방법론을 적용하는데 있어 가장 적합한 토큰화 방법이 무엇인지 알아보기 위한 탐구 연구를 진행했다. 실험을 위해서는 대표적인 전이 학습 모형이면서 가장 좋은 성능을 보이고 있는 모형인 BERT를 이용했으며, 최종 성능 비교를 위해 토큰화 방법에 따라 성능이 크게 좌우되는 과업 중 하나인 기계 독해 과업을 채택했다. 비교 실험을 위한 토큰화 방법으로는 통상적으로 사용되는 음절, 어절, 형태소 단위뿐만 아니라 최근 각광을 받고 있는 토큰화 방식인 Byte Pair Encoding (BPE)를 채택했으며, 이와 더불어 새로운 토큰화 방법인 형태소 분절 단위 위에 BPE를 적용하는 혼합 토큰화 방법을 제안 한 뒤 성능 비교를 실시했다. 실험 결과, 어휘집 축소 효과 및 언어 모델의 퍼플렉시티 관점에서는 음절 단위 토큰화가 우수한 성능을 보였으나, 토큰 자체의 의미 내포 능력이 중요한 기계 독해 과업의 경우 형태소 단위의 토큰화가 우수한 성능을 보임을 확인할 수 있었다. 또한, BPE 토큰화가 종합적으로 우수한 성능을 보이는 가운데, 본 연구에서 새로이 제안한 형태소 분절과 BPE를 동시에 이용하는 혼합 토큰화 방법이 가장 우수한 성능을 보임을 확인할 수 있었다.

  • PDF

A Keyphrase Extraction Model for Each Conference or Journal (학술대회 및 저널별 기술 핵심구 추출 모델)

  • Jeong, Hyun Ji;Jang, Gwangseon;Kim, Tae Hyun;Sin, Donggu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.81-83
    • /
    • 2022
  • Understanding research trends is necessary to select research topics and explore related works. Most researchers search representative keywords of interesting domains or technologies to understand research trends. However some conferences in artificial intelligence or data mining fields recently publish hundreds to thousands of papers for each year. It makes difficult for researchers to understand research trend of interesting domains. In our paper, we propose an automatic technology keyphrase extraction method to support researcher to understand research trend for each conference or journal. Keyphrase extraction that extracts important terms or phrases from a text, is a fundamental technology for a natural language processing such as summarization or searching, etc. Previous keyphrase extraction technologies based on pretrained language model extract keyphrases from long texts so performances are degraded in short texts like titles of papers. In this paper, we propose a techonolgy keyphrase extraction model that is robust in short text and considers the importance of the word.

  • PDF

Verification on stock return predictability of text in analyst reports (애널리스트 보고서 텍스트의 주가예측력에 대한 검증)

  • Young-Sun Lee;Akihiko Yamada;Cheol-Won Yang;Hohsuk Noh
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.5
    • /
    • pp.489-499
    • /
    • 2023
  • As sharing of analyst reports became widely available, reports generated by analysts have become a useful tool to reduce difference in financial information between market participants. The quantitative information of analyst reports has been used in many ways to predict stock returns. However, there are relatively few domestic studies on the prediction power of text information in analyst reports to predict stock returns. We test stock return predictability of text in analyst reports by creating variables representing the TONE from the text. To overcome the limitation of the linear-model-assumption-based approach, we use the random-forest-based F-test.

Automated Answer Recommendation System Using Convolutional Neural Networks For Efficient Customer Service Based on Text (텍스트 기반 상담시스템의 효율성 제고를 위한 합성곱신경망을 이용한 자동답변추천 시스템)

  • Na, Hunyeob;Seo, Sanghyun;Yun, Jisang;Jung, Changhoon;Jeon, Yongjin;Kim, Juntae
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.272-275
    • /
    • 2017
  • 대면 서비스보다 비대면 서비스를 선호하는 소비자들의 증가로 인해 기업의 고객 응대의 형태도 변해가고 있다. 기존의 전화 상담보다는 인터넷에 글을 쓰는 형식으로 문의를 하는 고객이 증가하고 있으며, 관련 기업에서는 이와 같은 변화에 효율적으로 대처하기 위해, 텍스트 기반의 상담시스템에 대한 다양한 연구 및 투자를 하고 있다. 특히, 입력된 질의에 대해서 자동 답변하는 챗봇(ChatBot)이 주목받고 있으나, 낮은 답변 정확도로 인해 실제 응용에는 어려움을 겪고 있다. 이에 본 논문에서는 상담원이 중심이 되는 텍스트 기반의 상담시스템에서 상담원이 보다 쉽게 답변을 수행할 수 있도록 자동으로 답변을 추천해주는 자동답변추천 시스템을 제안한다. 실험에서는 기존 질의응답 시스템 구축에 주로 사용되는 문장유사도 알고리즘과 더불어 합성곱신경망을 이용한 자동답변추천 기법의 답변추천 성능을 비교한다. 실험 결과, 문장유사도 기반의 답변추천 기법보다 본 논문에서 제안한 합성곱신경망(Convolutional Neural Networks) 기반의 답변추천시스템이 더 뛰어난 답변추천 성능을 나타냄을 보였다.

  • PDF