• Title/Summary/Keyword: 텍스트 연구

Search Result 3,471, Processing Time 0.036 seconds

A Study Video using Image and Voice Search (음성과 이미지를 이용한 동영상 검색에 관한 연구)

  • Sin, In-Gyeong;Park, Sung-Hyun;Ahn, Hyo-Chang;Rhee, Sang-Burm
    • Annual Conference of KIPS
    • /
    • 2012.11a
    • /
    • pp.568-571
    • /
    • 2012
  • 정보화 사회의 정보 기반 구조로서, 고속 정보망의 구축, 개인용 컴퓨터의 급속한 보급, 멀티미디어 기술의 발전 등으로 인하여 정보 서비스의 새로운 장이 열리고 있다. 동영상 데이터는 텍스트만이 아니라 영상정보, 음성정보등 각종 의미있는 다양한 멀티미디어 정보를 포함하고 있다. 본 논문에서는 동영상에서 음성과 영상을 분리하여 음성을 이용하여 음성열을 분할 및 복원하여 음성을 텍스트로 변환하여 텍스트색인파일을 만들고 영상은 이미지를 분할 및 히스토그램을 사용하여 이미지 샷을 검출하여 두 색인파일을 이용하여 인덱싱을 하여 동영상 검색에 활용한다.

Korean Pre-trained Model KE-T5-based Automatic Paper Summarization (한국어 사전학습 모델 KE-T5 기반 자동 논문 요약)

  • Seo, Hyeon-Tae;Shin, Saim;Kim, San
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.505-506
    • /
    • 2021
  • 최근 인터넷에서 기하급수적으로 증가하는 방대한 양의 텍스트를 자동으로 요약하려는 연구가 활발하게 이루어지고 있다. 자동 텍스트 요약 작업은 다양한 사전학습 모델의 등장으로 인해 많은 발전을 이루었다. 특히 T5(Text-to-Text Transfer Transformer) 기반의 모델은 자동 텍스트 요약 작업에서 매우 우수한 성능을 보이며, 해당 분야의 SOTA(State of the Art)를 달성하고 있다. 본 논문에서는 방대한 양의 한국어를 학습시킨 사전학습 모델 KE-T5를 활용하여 자동 논문 요약을 수행하고 평가한다.

  • PDF

Evaluation of Major Heavy Rain Events in the Annals and Rainfall Records of the Joseon Dynasty using Text Mining (텍스트마이닝을 이용한 조선왕조실록 및 측우기기록에 나타난 주요 호우사상의 평가)

  • Kim, Gwan-Jun;Kim, Soon-Mi;Lee, Dong-Hwan;Chae, Mool-Seok;Jeong, Sang
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2023.11a
    • /
    • pp.198-199
    • /
    • 2023
  • 본 연구에서는 조선왕조실록을 중심으로 조선시대의 호우 및 홍수기록의 기술방법에 대해 텍스트마이닝 분석을 실시하였다. 조선왕조실록은 조선시대의 큰 호우사상은 모두 포함하고 있기 때문에 이를 일정한 등급으로 나누어 분류한다면 극치 호우 사상의 발생특성을 이해하는데 도움이 될 수 있다. 전체적으로 '큰비'에서와 같이 강우에 대한 언급만이 있는 경우가 '큰물', '홍수', '폭우'와 같이 홍수유출 및 이에 따른 피해가 설명되어 있는 경우보다 강우의 재현기간이 작게 나타나는 것을 파악할 수 있었다. 또 하나 주목할만한 점은 기록된 호우사상이 강우의 총량보다는 강우의 지속기간에 보다 민감하다는 점이다. 즉, 일시에 많은 비가 온 경우보다는 장기간에 걸쳐 내린 호우사상에 보다 초점이 맞추어져 있다는 점이다. 즉, 홍수유출의 크기 및 이에 따른 피해의 정도가 실제 이들 호우사상이 기록으로 남게 되는 원인으로 파악된다.

  • PDF

Development of a Depression Prevention Platform using Multi-modal Emotion Recognition AI Technology (멀티모달 감정 인식 AI 기술을 이용한 우울증 예방 플랫폼 구축)

  • HyunBeen Jang;UiHyun Cho;SuYeon Kwon;Sun Min Lim;Selin Cho;JeongEun Nah
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.916-917
    • /
    • 2023
  • 본 연구는 사용자의 음성 패턴 분석과 텍스트 분류를 중심으로 이루어지는 한국어 감정 인식 작업을 개선하기 위해 Macaron Net 텍스트 모델의 결과와 MFCC 음성 모델의 결과 가중치 합을 분류하여 최종 감정을 판단하는 기존 82.9%였던 정확도를 텍스트 모델 기준 87.0%, Multi-Modal 모델 기준 88.0%로 개선한 모델을 제안한다. 해당 모델을 우울증 예방 플랫폼의 핵심 모델에 탑재하여 covid-19 팬데믹 이후 사회의 문제점으로 부상한 우울증 문제 해소에 기여 하고자 한다.

Image classification model utilizing text to improve image classification accuracy (이미지 분류 정확도 향상을 위한 텍스트 활용 이미지 분류 모델)

  • Ju-Hyeok Lee;Mi-Hui Kim
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.724-726
    • /
    • 2023
  • 컴퓨터 비전 문제 중 이미지 분류는 핵심적인 주제 중 하나이다. 딥러닝의 발전으로 이미지 분류 문제에서 높은 정확도와 성능을 보여준다. 하지만 대부분 이미지 분류 연구에서 시각정보인 이미지 내의 특징에만 의존하고 있다. 그렇기에 이미지의 본질적인 맥략과 함께 있는 텍스트 정보를 활용하지 못하는 경우도 있다. 이에 본 논문은 텍스트 정보를 활용하여 이미지 분류 성능을 개선하는 방식을 제안한다.

Exploring Causes of the Habitual Use of Text-based Online Social Interaction (TOSI): Focusing on Internet Self-efficacy, Social Presence and Intimacy (텍스트 기반 온라인 사회 상호작용(TOSI)의 습관적 이용에 대한 연구: 중학생의 인터넷 자기효능감, 사회적 실재감, 친밀감을 중심으로)

  • Kim, Yang-Ha;Jang, Joo-Young;Kim, Min-Gyu;Kim, Joo-Han
    • Korean journal of communication and information
    • /
    • v.38
    • /
    • pp.119-146
    • /
    • 2007
  • The purpose of this paper is to explore the factors causing adolescents' habitual use of text-based online social interaction (TOSI). The authors of the present study assumed that adolescents' perceived intimacy would affect the use of TOSI. Using structural equation modeling, the influences of perceived social presence and Internet self-efficacy on habitual use of TOSI were examined indirectly as well as directly, with and without intimacy as a mediate factor. The results show that the indirect effects were proven to be stronger compared with the direct effects. Perceived intimacy appeared to encourage more frequent uses of TOSI. The effects of intimacy were even more stronger especially with those who had higher levels of Internet self-efficacy.

  • PDF

A Study on Text Mining Analysis of Presidential Maritime Concept in KOREA (텍스트마이닝을 이용한 한국 대통령의 해양관에 관한 연구)

  • Kim, Sung-Kuk;Lee, Tae-Hwee
    • Journal of Korea Port Economic Association
    • /
    • v.36 no.3
    • /
    • pp.39-54
    • /
    • 2020
  • In the presidential political system, the word of the president has great influence on the formation of national policy and the decision-making process. Policy priorities are determined according to the president's ideology and core values, and various policies are established and executed according to the priorities. Therefore, this paper analyzes the contents of the president's speech. Since the president's speech is a semantic datum, in order to analyze unstructured text, big data analysis is conducted through the methods of machine learning and deep learning. In this study, the president's speech at the "National Sea Day" commemoration was obtained 1996 onwards and analyzed using topic modeling. As a result of the analysis, all the presidents' speeches were delivered with a view of the ocean that was consistent with the direction of their administration. It was confirmed that the ocean-industry-resource topics, which are the intrinsic values of the ocean, were not damaged and consistently emphasized by all presidents.

A Study on Monitoring Method of Citizen Opinion based on Big Data : Focused on Gyeonggi Lacal Currency (Gyeonggi Money) (빅데이터 기반 시민의견 모니터링 방안 연구 : "경기지역화폐"를 중심으로)

  • Ahn, Soon-Jae;Lee, Sae-Mi;Ryu, Seung-Ei
    • Journal of Digital Convergence
    • /
    • v.18 no.7
    • /
    • pp.93-99
    • /
    • 2020
  • Text mining is one of the big data analysis methods that extracts meaningful information from atypical large-scale text data. In this study, text mining was used to monitor citizens' opinions on the policies and systems being implemented. We collected 5,108 newspaper articles and 748 online cafe posts related to 'Gyeonggi Lacal Currency' and performed frequency analysis, TF-IDF analysis, association analysis, and word tree visualization analysis. As a result, many articles related to the purpose of introducing local currency, the benefits provided, and the method of use. However, the contents related to the actual use of local currency were written in the online cafe posts. In order to revitalize local currency, the news was involved in the promotion of local currency as an informant. Online cafe posts consisted of the opinions of citizens who are local currency users. SNS and text mining are expected to effectively activate various policies as well as local currency.

Analysis of News Regarding New Southeastern Airport Using Text Mining Techniques (텍스트 마이닝 기법을 활용한 동남권 신공항 신문기사 분석)

  • Han, Mu Moung Cho;Kim, Yang Sok;Lee, Choong Kwon
    • Smart Media Journal
    • /
    • v.6 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • Social issues are important factors that decide government policy and newspapers are critical channels that reflect them. Analysing news articles can contribute to understanding social issues, but it is very difficult to analyse the unstructured large volumes of news data manually. Therefore, this study aims to analyze the different views among stakeholders of a specific social issue by using text analysis, word cloud analysis and associative analysis methods, which systematically transform unstructured news data into structured one. We analyzed a total of 115 news articles and a total of 6,772 comments, collected from the selected newspapers (Chosun-Il-bo, Joongang-Il-bo, Donga-Il-bo, Maeil Newspaper, Busan-Il-bo) for two weeks. We found that there are significant differences in tone between newspapers. While nation-wide daily newspapers focus on political relations with local areas, local daily newspapers tend to write articles to represent local governments' interests.

Identifying Social Relationships using Text Analysis for Social Chatbots (소셜챗봇 구축에 필요한 관계성 추론을 위한 텍스트마이닝 방법)

  • Kim, Jeonghun;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.85-110
    • /
    • 2018
  • A chatbot is an interactive assistant that utilizes many communication modes: voice, images, video, or text. It is an artificial intelligence-based application that responds to users' needs or solves problems during user-friendly conversation. However, the current version of the chatbot is focused on understanding and performing tasks requested by the user; its ability to generate personalized conversation suitable for relationship-building is limited. Recognizing the need to build a relationship and making suitable conversation is more important for social chatbots who require social skills similar to those of problem-solving chatbots like the intelligent personal assistant. The purpose of this study is to propose a text analysis method that evaluates relationships between chatbots and users based on content input by the user and adapted to the communication situation, enabling the chatbot to conduct suitable conversations. To evaluate the performance of this method, we examined learning and verified the results using actual SNS conversation records. The results of the analysis will aid in implementation of the social chatbot, as this method yields excellent results even when the private profile information of the user is excluded for privacy reasons.