This study is to analyze the research trends related to the 'glass ceiling' phenomenon using big data analysis methods and to suggest social implications. To analyze the research trends of 'glass ceiling', the historical event that broke the 'glass ceiling' was set as an important issue, and keywords were collected by dividing park's term into three. Before, throughout and after, her term. As a result of frequency analysis, research was conducted based on 'public servants' which was selected as the main keyword in the first period, while 'women's work family compatibility' was chosen as the main keyword group in the second period. In the third period, keywords for women's occupational groups were being diversified. As a result of applying CONCOR techniques to make the studied main topics grouped, we were able to confirm that the main issues were the differentiating factors, the customary gender discrimination culture, the jobs aimed for studying, the work-family balance, the glass ceiling and the organizational performance adjustment factors, the public sector, organizational performance, and the private sector. Besides work-family compatibility support system, it was suggested as a social implication that research on improving the system to resolve the glass ceiling factor and to expand the target jobs to give solutions to real-life issues were needed, and also suggested that research on the 'glass ceiling' which the general public perceives through social medias or articles in the news, was needed in the future.
News articles are the most suitable medium for examining the events occurring at home and abroad. Especially, as the development of information and communication technology has brought various kinds of online news media, the news about the events occurring in society has increased greatly. So automatically summarizing key events from massive amounts of news data will help users to look at many of the events at a glance. In addition, if we build and provide an event network based on the relevance of events, it will be able to greatly help the reader in understanding the current events. In this study, we propose a method for extracting event networks from large news text data. To this end, we first collected Korean political and social articles from March 2016 to March 2017, and integrated the synonyms by leaving only meaningful words through preprocessing using NPMI and Word2Vec. Latent Dirichlet allocation (LDA) topic modeling was used to calculate the subject distribution by date and to find the peak of the subject distribution and to detect the event. A total of 32 topics were extracted from the topic modeling, and the point of occurrence of the event was deduced by looking at the point at which each subject distribution surged. As a result, a total of 85 events were detected, but the final 16 events were filtered and presented using the Gaussian smoothing technique. We also calculated the relevance score between events detected to construct the event network. Using the cosine coefficient between the co-occurred events, we calculated the relevance between the events and connected the events to construct the event network. Finally, we set up the event network by setting each event to each vertex and the relevance score between events to the vertices connecting the vertices. The event network constructed in our methods helped us to sort out major events in the political and social fields in Korea that occurred in the last one year in chronological order and at the same time identify which events are related to certain events. Our approach differs from existing event detection methods in that LDA topic modeling makes it possible to easily analyze large amounts of data and to identify the relevance of events that were difficult to detect in existing event detection. We applied various text mining techniques and Word2vec technique in the text preprocessing to improve the accuracy of the extraction of proper nouns and synthetic nouns, which have been difficult in analyzing existing Korean texts, can be found. In this study, the detection and network configuration techniques of the event have the following advantages in practical application. First, LDA topic modeling, which is unsupervised learning, can easily analyze subject and topic words and distribution from huge amount of data. Also, by using the date information of the collected news articles, it is possible to express the distribution by topic in a time series. Second, we can find out the connection of events in the form of present and summarized form by calculating relevance score and constructing event network by using simultaneous occurrence of topics that are difficult to grasp in existing event detection. It can be seen from the fact that the inter-event relevance-based event network proposed in this study was actually constructed in order of occurrence time. It is also possible to identify what happened as a starting point for a series of events through the event network. The limitation of this study is that the characteristics of LDA topic modeling have different results according to the initial parameters and the number of subjects, and the subject and event name of the analysis result should be given by the subjective judgment of the researcher. Also, since each topic is assumed to be exclusive and independent, it does not take into account the relevance between themes. Subsequent studies need to calculate the relevance between events that are not covered in this study or those that belong to the same subject.
KSCE Journal of Civil and Environmental Engineering Research
/
v.38
no.4
/
pp.595-599
/
2018
Sufficient understanding of oversea construction market status is crucial to get profitability in the international construction project. Plenty of researchers have been considering the news article as a fine data source for figuring out the market condition, since the data includes market information such as political, economic, and social issue. Since the text data exists in unstructured format with huge size, various text-mining techniques were studied to reduce the unnecessary manpower, time, and cost to summarize the data. However, there are some limitations to extract the needed information from the news article because of the existence of various topics in the data. This research is aimed to overcome the problems and contribute to summarization of market status by performing topic modeling with Latent Dirichlet Allocation. With assuming that 10 topics existed in the corpus, the topics included projects for user convenience (topic-2), private supports to solve poverty problems in Africa (topic-4), and so on. By grouping the topics in the news articles, the results could improve extracting useful information and summarizing the market status.
Researches in text categorization have been confined to whole-document-level classification, probably due to lacks of full-text test collections. However, full-length documents availably today in large quantities pose renewed interests in text classification. A document is usually written in an organized structure to present its main topic(s). This structure can be expressed as a sequence of sub-topic text blocks, or passages. In order to reflect the sub-topic structure of a document, we propose a new passage-level or passage-based text categorization model, which segments a test document into several Passages, assigns categories to each passage, and merges passage categories to document categories. Compared with traditional document-level categorization, two additional steps, passage splitting and category merging, are required in this model. By using four subsets of Routers text categorization test collection and a full-text test collection of which documents are varying from tens of kilobytes to hundreds, we evaluated the proposed model, especially the effectiveness of various passage types and the importance of passage location in category merging. Our results show simple windows are best for all test collections tested in these experiments. We also found that passages have different degrees of contribution to main topic(s), depending on their location in the test document.
Comics uses words to convey its content and meaning, while the comic image conveys the content as a narrative function to represent how language is combined with the text. This paper makes a comparison and analysis of the comics of Japan and South Korea, in terms of words and image expression, narrative techniques, and the way of communication, to study the characteristics of image narrative. The comic image of Jing ke is the other as a flow of narrative and getting rid of the current screen, to resonate with the readers. Go U-yeong's comics and Sumeragi Natsuki's set up a virtual narrative time and space through the line, surface, space and shade, to realize the reproduction of unhistorical facts and the significance of narrative with the artist's imagination. Sumeragi Natsuki's comics uses historical facts to represent exquisite narrative like still-life paintings. She focuses on the description of the objective facts of history, to seek the sensitive comic image beyond reality. The image narration of Go U-yeong's comics is a clash between his historical narrative among the subjective romantic image and the readers' awareness narrative flow that they insist inside. Therefore, he tries to keep balance. The instant image in his comics is not a reproduction of the historical real moment, but a reproduction image of the reality reconstructed by his own pursuit of narrative.
Journal of the Korean Society of Marine Environment & Safety
/
v.26
no.2
/
pp.121-128
/
2020
The Marine Safety Culture Index (MSCI) was developed in the year 2018 for objectively assessing the public safety culture levels and for incorporating it as data to spread knowledge regarding the marine safety culture. The method for calculating the safety culture index should include issues that may affect the safety culture and should consist of appropriate attributes for estimating the current status. In addition, continuous verification and supplementation are required for addressing social and economic changes. In this study, to determine whether the questionnaire designed by marine experts reflects the people's interests and needs, we analyzed 915 marine safety proposals. Text mining was employed for analyzing the unstructured data of the marine safety proposals, and network analysis and topic modeling were subsequently performed. Analysis of the marine safety proposals was centered on attributes such as education, public relations, safety rules, awareness, skilled workers, and systems. Eighteen questions were modified and supplemented for reflecting the marine safety proposals, and reliability of the revised questions was analyzed. Furthermore, compared to the previous year, the questionnaire's internal consistency was improved upon and was rated at a high value of 0.895. It is expected that by employing the derived marine safety culture index and incorporating the improved questionnaire that reflects the requirements of marine experts and the people, the improved questionnaire will contribute to the establishment of policies for spreading knowledge regarding the marine safety culture.
Journal of Korean Society for Geospatial Information Science
/
v.25
no.1
/
pp.37-46
/
2017
Recently, disaster caused by social factors is frequently occurring in Korea. Prediction about what crisis could happen is difficult, raising the citizen's concern. In this study, we developed a program to acquire tweet data by applying Python language based Tweepy plug-in, regarding social disasters such as 'Nonspecific motive crimes' and 'Oxy' products. These data were used to evaluate psychological trauma and anxiety of citizens through the text clustering analysis and the opinion mining analysis of the R Studio program after natural language processing. In the analysis of the 'Oxy' case, the accident of Sewol ferry, the continual sale of Oxy products of the Oxy had the highest similarity and 'Nonspecific motive crimes', the coping measures of the government against unexpected incidents such as the 'incident' of the screen door, the accident of Sewol ferry and 'Nonspecific motive crime' due to misogyny in Busan, had the highest similarity. In addition, the average index of the Citizens sentiment score in Nonspecific motive crimes was more negative than that in the Oxy case by 11.61%p. Therefore, it is expected that the findings will be utilized to predict the mental health of citizens to prevent future accidents.
Due to the development of information and communication technology, the number of new / variant malicious codes is increasing rapidly every year, and various types of malicious codes are spreading due to the development of Internet of things and cloud computing technology. In this paper, we propose a malware analysis method based on string information that can be used regardless of operating system environment and represents library call information related to malicious behavior. Attackers can easily create malware using existing code or by using automated authoring tools, and the generated malware operates in a similar way to existing malware. Since most of the strings that can be extracted from malicious code are composed of information closely related to malicious behavior, it is processed by weighting data features using text mining based method to extract them as effective features for malware analysis. Based on the processed data, a model is constructed using various machine learning algorithms to perform experiments on detection of malicious status and classification of malicious groups. Data has been compared and verified against all files used on Windows and Linux operating systems. The accuracy of malicious detection is about 93.5%, the accuracy of group classification is about 90%. The proposed technique has a wide range of applications because it is relatively simple, fast, and operating system independent as a single model because it is not necessary to build a model for each group when classifying malicious groups. In addition, since the string information is extracted through static analysis, it can be processed faster than the analysis method that directly executes the code.
Mansebo[만세보] contains a total of 111 old shijos under the title of Haedongyeongeon[해동영언]. This dissertation presumes Haedongyeongeon[해동영언] as early 20th century shijo text and surveys its literary characteristic and its significance in relation with anthological compilation. Haedongyeongeon can be seen as both newspaper serials and a short anthology. The basic pattern of the serials shows an organization of 'title. musical designation, author. text. and a brief review. Of these, the review is what most clearly shows the characteristic of the serials. The review is written in Chinese followed by Korean letters to designate the sound of the Chinese. which is presumably designed to attract more readers for the newspaper. On the other hand, Haedongyeongeon[해동영언], when seen as a collection of works printed in serials, clearly shows an intention of compiling an anthology, particularly in its way of overall classification of works or arranging works according to their authors, and thus may well be defined as a short anthology. This anthology somewhat excessively pursues perfection in formality, and is characterized by its strong intent to be read as popular literature, and therefore could be said to manifest the general characteristic of 20th century anthologies. The planner of the serial Haedongyeongeon[해동영언], or the compiler of the anthology is thought to be one of the core figures of Mansebo[만세보], that is, O Sechang[오세창], Lee Injik[이인직], Choi Yeongnyeon[최영년], Shin Gwanghui[신광희], but of them all, considering all circumstances, Choi Yeongnyeon[최영년] is most likely to be the one. Lastly, it is presently unknown what anthology was used as the basis of Haedongyeongeon[해동영언] and accordingly any judgement on that head has been deferred.
KIPS Transactions on Software and Data Engineering
/
v.7
no.2
/
pp.43-50
/
2018
Biometric information computing is greatly influencing both a computing system and Big-data system based on the bio-information system that combines bio-signal sensors and bio-information processing. Unlike conventional data formats such as text, images, and videos, biometric information is represented by text-based values that give meaning to a bio-signal, important event moments are stored in an image format, a complex data format such as a video format is constructed for data prediction and analysis through time series analysis. Such a complex data structure may be separately requested by text, image, video format depending on characteristics of data required by individual biometric information application services, or may request complex data formats simultaneously depending on the situation. Since previous bio-information processing computing systems depend on conventional computing component, computing structure, and data processing method, they have many inefficiencies in terms of data processing performance, transmission capability, storage efficiency, and system safety. In this study, we propose an improved biosensing converged big data computing architecture to build a platform that supports biometric information processing computing effectively. The proposed architecture effectively supports data storage and transmission efficiency, computing performance, and system stability. And, it can lay the foundation for system implementation and biometric information service optimization optimized for future biometric information computing.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.