• Title/Summary/Keyword: 텍스트 연구

Search Result 3,494, Processing Time 0.044 seconds

XML-Based Component Specification Language (XML 기반의 컴포넌트 명세 언어)

  • 김원기;안치돈;이윤수;왕창종
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10a
    • /
    • pp.498-500
    • /
    • 1999
  • 컴포넌트 기반 소프트웨어 공학에서 컴포넌트를 명세하기 위한 명세 언어는 컴포넌트 분류, 검증 및 검색에 가장 기본적인 조건이다. 기존에 이미 많은 명세 언어가 사용되어 왔지만 명세의 복잡성으로 인한 어려움이 있다. 따라서 이 연구에서는 이러한 복잡성과 개발자에게 좀 더 쉬운 명세 방법을 제공하기 위해 XML을 기반으로 하여 새로운 컴포넌트 명세 언어를 제안하였다. 제안한 명세 언어는 컴포넌트의 기능명세부분, 타입 검사에 의한 검색을 위한 부분, 명세 일치 방식을 위한 부분으로 구성된 컴포넌트 기능명세와 소프트웨어 아키텍쳐를 위한 명세로 구성된다. 이 연구에서는 각 부분을 XML 태그에 의해 정의하였다. 또한 소프트웨어 아키텍쳐 명세를 위한 그래픽 표기법과 텍스트 표기법을 제안하였다. 이 연구에서 제안한 명세언어는 화이트박스 재사용과 블랙박스 재사용을 지원하고 오류가능성을 줄일 수 있다.

  • PDF

A Study of Data Mining Application in Information Management Field (정보관리분야의 데이터 마이닝 기법 적용에 대한 연구)

  • Choi, Hee-Yoon
    • Journal of Information Management
    • /
    • v.31 no.3
    • /
    • pp.1-20
    • /
    • 2000
  • A variety of trials selecting necessary and valuable information from rapidly increasing volume of data are made, and as one of them, data mining methods is an interest. This methodology is increasingly appzied to information management field which consists of efficient processing and systemizing increasing digital documents for user service. This article analyzes theoletical background and empirical case studies of data mining, and predicts the possibility of its application to information management area.

  • PDF

Automated Classification of Software Category using Weight Sharing (가중치 공유를 이용한 소프트웨어 카테고리 자동 분류)

  • Kim, Min-Ha;Shim, Kyoo-Jin;Lee, Min-Soo;Wang, Sheng-Tsai;Kwon, Jun-Hyeok;Lee, Chan-Gun
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.61-64
    • /
    • 2020
  • 현재까지 심층 학습을 이용하여 텍스트를 자동으로 분류해주는 연구가 활발히 진행되었으며, 특히 소프트웨어 카테고리를 자동으로 분류해주는 연구가 이루어지고 있다. 최근 심층 신경망의 적절한 구조를 효율적으로 탐색할 수 있는 가중치 공유 기법이 연구되었다. 우리는 이를 응용하여 본 논문에서 가중치 공유를 이용한 소프트웨어 카테고리 분류 방법을 제안하며, 여러 실험을 통해 해당 기법의 성능을 측정하고 논의한다.

A Study on Korean Fake news Detection Model Using Word Embedding (워드 임베딩을 활용한 한국어 가짜뉴스 탐지 모델에 관한 연구)

  • Shim, Jae-Seung;Lee, Jaejun;Jeong, Ii Tae;Ahn, Hyunchul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.07a
    • /
    • pp.199-202
    • /
    • 2020
  • 본 논문에서는 가짜뉴스 탐지 모델에 워드 임베딩 기법을 접목하여 성능을 향상시키는 방법을 제안한다. 기존의 한국어 가짜뉴스 탐지 연구는 희소 표현인 빈도-역문서 빈도(TF-IDF)를 활용한 탐지 모델들이 주를 이루었다. 하지만 이는 가짜뉴스 탐지의 관점에서 뉴스의 언어적 특성을 파악하는 데 한계가 존재하는데, 특히 문맥에서 드러나는 언어적 특성을 구조적으로 반영하지 못한다. 이에 밀집 표현 기반의 워드 임베딩 기법인 Word2vec을 활용한 텍스트 전처리를 통해 문맥 정보까지 반영한 가짜뉴스 탐지 모델을 본 연구의 제안 모델로 생성한 후 TF-IDF 기반의 가짜뉴스 탐지 모델을 비교 모델로 생성하여 두 모델 간의 비교를 통한 성능 검증을 수행하였다. 그 결과 Word2vec 기반의 제안모형이 더욱 우수하였음을 확인하였다.

  • PDF

A Study on the Prediction of River Water Level Using Artificial Neural Network Theory and Unstructured Data (인공신경망 이론과 비정형데이터를 활용한 하천수위 예측에 관한 연구)

  • Lee, Jeongha;Hwang, SeokHwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.388-388
    • /
    • 2020
  • 매년 국지성호우 및 태풍으로 인해 하천 범람이나 저지대침수가 발생하고 있으며 이는 인명 피해 사례로 이어지기도 한다. 피해 발생을 최소화시키기 위해 강우와 유량과 같은 정형데이터로 홍수예보가 이뤄지고 있으나 기존의 정형데이터만 사용하다보니 도심지역이나 소규모 하천에서 인명 피해 예측에 어려움이 있다. 이를 보완하기 위해서는 인구의 유동성을 고려한 비정형데이터를 활용해야 한다. 최근 소셜 네트워크 서비스(SNS)의 사용자가 증가됨에 따라 텍스트나 사진과 같은 다양한 비정형데이터가 생성되고 있다. 이렇게 생성된 데이터는 다양한 분야에서 활용되고 있으며 특히 지진이나 홍수와 같은 재난 발생 시 유용한 데이터로 활용된 사례가 증가하고 있다. 이는 사람들이 GIS와 같은 위치정보나 시간 등을 포함한 다양한 정보를 포함하기 때문이다. 하지만 이렇게 생산된 비정형데이터를 기존 물리적 기반의 수문모형의 데이터로 활용하기에는 많은 한계점이 있다. 따라서 본 연구에서는 SNS 채널을 통해 생성된 비정형 데이터들을 인공신경망모형에 적용하여 하천수위를 예측하였다.

  • PDF

Comparing of pre-trained Embedding for Event Extraction (사건 관계 추출을 위한 사전 학습 임베딩 비교)

  • Yang, Seung-Moo;Lee, Mira;Jeong, Chan-Hee;Jung, Hye-Dong
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.626-628
    • /
    • 2021
  • 사건 관계 추출 태스크는 구조화되지 않은 텍스트 데이터에서 사건의 구조화된 표현을 얻는 것이다. 하나의 문장에서도 많은 정보를 얻을 수 있는 중요한 태스크임에도 불구하고, 다양한 사전 학습 모델을 적용한 연구는 아직 활발하게 연구되지 않고 있다. 따라서 본 연구에서 사전 학습된 모델의 임베딩 기법 중 BERT, RoBERTa, SpanBERT에 각각 base, large 아키텍처를 적용하여 실험하였다. 사건을 식별하기 위한 trigger와 해당 trigger의 세부 argument를 식별하기 위한 분류기를 상위레이어로 각각 설계하였고, 다양한 배치 크기를 적용하여 실험하였다. 성능평가는 trigger/argument 각각 F1 score를 적용하였고, 결과는 RoBERTa large 모델에서 좋은 성능을 보인 것을 확인하였다.

Pet Behavior Detection through Sensor Data Synthesis (센서 데이터 합성을 통한 반려동물 행동 감지)

  • Kim, Hyungju;Park, Chan;Moon, Nammee
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.606-608
    • /
    • 2022
  • 센서 데이터를 활용한 행동 감지 연구는 인간 행동 인식을 선행연구로 진행되었으며, 인식의 정확도를 높이기 위해 전처리, 보간, 증강 등을 통한 연구가 활발히 진행되고 있다. 이에 본 논문에서는 시계열 센서 데이터 증강을 통하여 반려동물의 행동 감지를 제안한다. ODROID 단일 보드 컴퓨터와 6축 센서(가속도, 자이로) 데이터를 탑재한 소형 디바이스를 사용하여 블루투스 통신을 통해 웹 서버 DB에 저장한다. 저장된 데이터는 이상치, 결측치 처리 후 정규화를 통해 시퀀스를 구성하는 전처리 과정을 거친다. 이후 GAN을 기반으로 한 시계열 데이터 증강을 진행한다. 이때, 데이터 증강은 입력된 텍스트에 따라 센서 데이터로 변환하여 데이터를 증강한다. 학습된 딥러닝 모델을 바탕으로 행동을 감지 후 평가 지표에 따라 모델 성능을 검증한다.

Domain-Adaptive Pre-training for Korean Document Summarization (도메인 적응 사전 훈련 (Domain-Adaptive Pre-training, DAPT) 한국어 문서 요약)

  • Hyungkuk Jang;Hyuncheol, Jang
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.843-845
    • /
    • 2024
  • 도메인 적응 사전 훈련(Domain-Adaptive Pre-training, DAPT)을 활용한 한국어 문서 요약 연구에서는 특정 도메인의 문서에 대한 이해도와 요약 성능을 향상시키기 위해 DAPT 기법을 적용했다. 이 연구는 사전 훈련된 언어 모델이 일반적인 언어 이해 능력을 넘어 특정 도메인에 최적화된 성능을 발휘할 수 있도록 도메인 특화 데이터셋을 사용하여 추가적인 사전 훈련을 진행한다. 구체적으로, 의료, 법률, 기술 등 다양한 도메인에서 수집한 한국어 텍스트 데이터를 이용하여 모델을 미세 조정하며, 이를 통해 얻은 모델은 도메인에 특화된 용어와 문맥을 효과적으로 처리할 수 있음을 보여준다. 성능 평가에서는 기존 사전 훈련 모델과 DAPT를 적용한 모델을 비교하여 DAPT의 효과를 검증했다. 연구 결과, DAPT를 적용한 모델은 도메인 특화 문서 요약 작업에서 성능 향상을 보였으며, 이는 실제 도메인별 활용에서도 유용할 것으로 기대된다.

A Study on the School Library Research Trends Using Topic Modeling (토픽모델링을 활용한 학교도서관 연구동향 분석)

  • Jung, Young-Joo;Kim, Hea-Jin
    • Journal of Korean Library and Information Science Society
    • /
    • v.51 no.3
    • /
    • pp.103-121
    • /
    • 2020
  • This study aimed to analyze the research trends of school libraries from 1990 to July 2020. To this end, LDA topic modeling analysis was conducted to the domestic article abstracts related to school libraries. The total number of documents is 498 papers published by the four major domestic journals in Library and Information Science. The log-likelihood estimate criterion was used to determine the number of topics for topic modeling. As a result of the study, 27 topics were discovered, then, theory were categorized by eight subject areas: general, institutional system, building/equipment, operation/management, data organization, service, education, and others. The most popular research was library utilization classes (T27) and Information Utilization (T2). More than 20 studies were found in each evaluation index development (T13), school librarian placement (T24), learning information media utilization (T3), community public library (T7), library cooperation (T9), library use (T17), library research (T11), reading education (T4), collection development (T5), and education effects/teaching methods (T18).

A Study on the Development of Korean Defense Standards through Text Mining-Based Trend Analysis of United States Defense Standards (텍스트 마이닝 기반의 미국 국방 표준 동향 분석을 통한 한국 국방 표준의 발전 방안 연구)

  • Chae, Soohwan;Shim, Bohyun;Yeom, Seulki;Hong, Seongdon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.651-660
    • /
    • 2021
  • This study examined the trend of standards established in the United States and to find points that can be applied to Korean defense standards. The titles of various United States defense standard documents registered on the web were selected for this research. The wordcloud was created after analyzing the frequency of words appearing in the title using text mining. The trend of words appearing in MIL-STD by era was obtained. This study identified words that appear often due to the format of the document itself, words that appear regularly throughout the era, words that are used frequently in the past but are not used much in the present, and words that did not receive attention in the past but appeared recurrently in the present. In addition, the characteristics of each document were derived through the wordcloud produced for various defense documents. In conclusion, Korean defense standards also require a consideration of safe and efficient management, transport, and load design of hazardous materials. Furthermore, the quality of defense standards can be expected to improve if the defense standard document system can be established, focusing on efficient management.