• Title/Summary/Keyword: 텍스트 수집

Search Result 704, Processing Time 0.026 seconds

A Study on Artificial Intelligence Ethics Perceptions of University Students by Text Mining (텍스트 마이닝으로 살펴본 대학생들의 인공지능 윤리 인식 연구)

  • Yoo, Sujin;Jang, YunJae
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.947-960
    • /
    • 2021
  • In this study, we examine the AI ethics perception of university students to explore the direction of AI ethics education. For this, 83 students wrote their thoughts about 5 discussion topics on online bulletin board. We analyzed it using language networks, one of the text mining techniques. As a result, 62.5% of students spoke the future of the AI society positively. Second, if there is a self-driving car accident, 39.2% of students thought it is the vehicle owner's responsibility at the current level of autonomous driving. Third, invasion of privacy, abuse of technology, and unbalanced information acquisition were cited as dysfunctions of the development of AI. It was mentioned that ethical education for both AI users and developers is required as a way to minimize malfunctions, and institutional preparations should be carried out in parallel. Fourth, only 19.2% of students showed a positive opinion about a society where face recognition technology is universal. Finally, there was a common opinion that when collecting data including personal information, only the part with the consent should be used. Regarding the use of AI without moral standards, they emphasized the ethical literacy of both users and developers. This study is meaningful in that it provides information necessary to design the contents of artificial intelligence ethics education in liberal arts education.

The Analysis of Research Trends in Social Service Quality Using Text Mining and Topic Modeling (텍스트 마이닝과 토픽모델링 활용한 사회서비스 품질의 학술연구 동향 분석)

  • Lee, Hae-Jung;Youn, Ki-Hyok
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.3
    • /
    • pp.29-40
    • /
    • 2022
  • The aim of this study was to analyze research trends of social service quality from 2007 to 2020 based on text mining and topic modeling. Our focus was to provide foundational materials for social service improvement by discovering the latent meaning of relevant research papers. We collected 97 scholarly articles on social service, social welfare service, and quality from RISS, and implemented two segments of text mining analysis. Our results showed that the first section included 38 papers and the second 59, indicating 6.9 articles annually. Word frequency results demonstrated that the common keywords of both sections were 'service', 'quality', 'social service', 'satisfaction', 'users', 'quality control', 'reuse', 'policy', 'voucher', etc. TF-IDF suggested that 'social service', 'satisfaction', 'users', 'customer satisfaction', 'revisiting', 'voucher', 'quality', 'assisted living facility', 'quality control', 'community service investment business', etc., were represented in both categories. Lastly, topic modeling analysis revealed that the first segment displayed 'types of care services', 'service costs', 'reuse', 'users based', and 'job creation', whereas the second presented 'service quality', 'public value', 'management system of human resources', 'service provision system', and 'service satisfaction'. Future directions of social service quality were discussed based on the results.

Text Mining-Based Analysis of Hyundai Automobile Consumer Satisfaction and Dissatisfaction Factors in the Chinese Market: A Comparison with Other Brands (텍스트 마이닝을 이용한 현대 자동차 중국시장 소비자의 만족 및 불만족 요인 분석 연구: 다른 브랜드와의 비교)

  • Cui Ran;Inyong Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.1
    • /
    • pp.539-549
    • /
    • 2024
  • This study employed text mining techniques like frequency analysis, word clouds, and LDA topic modeling to assess consumer satisfaction and dissatisfaction with Hyundai Motor Company in the Chinese market, compared to brands such as Toyota, Volkswagen, Buick, and Geely. Focusing on compact vehicles from these brands between 2021 and 2023, this study analyzed customer reviews. The results indicated Hyundai Avante's positive factors, including a long wheelbase. However, it also highlighted dissatisfaction aspects like Manipulate, engine performance, trunk space, chassis and suspension, safety features, quantity and brand of audio speakers, music membership service, separation band, screen reflection, CarLife, and map services. Addressing these issues could significantly enhance Hyundai's competitiveness in the Chinese market. Previous studies mainly focused on literature research and surveys, which only revealed consumer perceptions limited to the variables set by the researchers. This study, through text mining and comparing various car brands, aims to gain a deeper understanding of market trends and consumer preferences, providing useful information for marketing strategies of Hyundai and other brands in the Chinese market.

Analysis of Urban-to-Rural Migrants' Perceptions of the 'Everyday Landscape' Using Diary-Based Text Mining (일기를 통해 본 귀농·귀촌인 '일상 경관' 인식 - 텍스트 마이닝 적용 -)

  • OH Jungshim
    • Korean Journal of Heritage: History & Science
    • /
    • v.57 no.3
    • /
    • pp.184-199
    • /
    • 2024
  • This study was conducted in response to the global trend of emphasizing the importance of "everyday landscapes", focusing on the perspective of those who have returned to rural life. With a focus on the case of Gokseong-gun in Jeollanam-do, 460 diaries written by these individuals were collected and analyzed using text mining techniques such as "frequency analysis", "topic modeling", and "sentiment analysis". The analysis of noun morphemes was interpreted from a cognitive aspect, while adjective morphemes were interpreted from an emotional aspect. In particular, this study applied semantic network analysis to overcome the limitations of existing sentiment analysis, and extracted a word network list and examined the content of nouns connected to adjectives that express emotions to identify the targets and contents of sentiments. This method represents a differentiated approach that is not commonly found in existing research. One of the intriguing findings is that the urban-to-rural migrants identified everyday landscapes such as "flowers on neighborhood walking paths", "harvest of a garden", "neighborhood events", and "cozy cafe spaces" as important. These elements all contain visual and enjoyable aspects of everyday landscapes. Currently, many rural villages are attempting to add visual elements to their everyday landscapes by unifying roof colors or painting murals on walls. However, such artificial measures do not necessarily leave a lasting impression on people. A critical review of current policies and systems is necessary. This research is significant because it is the first to study everyday landscapes from the perspective of urban-to-rural migration using diaries and text mining. With a lack of domestic research on everyday landscapes, this study hopes to contribute to the activation of related research in Korea.

An Analysis of the Internal Marketing Impact on the Market Capitalization Fluctuation Rate based on the Online Company Reviews from Jobplanet (직원을 위한 내부마케팅이 기업의 시가 총액 변동률에 미치는 영향 분석: 잡플래닛 기업 리뷰를 중심으로)

  • Kichul Choi;Sang-Yong Tom Lee
    • Information Systems Review
    • /
    • v.20 no.2
    • /
    • pp.39-62
    • /
    • 2018
  • Thanks to the growth of computing power and the recent development of data analytics, researchers have started to work on the data produced by users through the Internet or social media. This study is in line with these recent research trends and attempts to adopt data analytical techniques. We focus on the impact of "internal marketing" factors on firm performance, which is typically studied through survey methodologies. We looked into the job review platform Jobplanet (www.jobplanet.co.kr), which is a website where employees and former employees anonymously review companies and their management. With web crawling processes, we collected over 40K data points and performed morphological analysis to classify employees' reviews for internal marketing data. We then implemented econometric analysis to see the relationship between internal marketing and market capitalization. Contrary to the findings of extant survey studies, internal marketing is positively related to a firm's market capitalization only within a limited area. In most of the areas, the relationships are negative. Particularly, female-friendly environment and human resource development (HRD) are the areas exhibiting positive relations with market capitalization in the manufacturing industry. In the service industry, most of the areas, such as employ welfare and work-life balance, are negatively related with market capitalization. When firm size is small (or the history is short), female-friendly environment positively affect firm performance. On the contrary, when firm size is big (or the history is long), most of the internal marketing factors are either negative or insignificant. We explain the theoretical contributions and managerial implications with these results.

Building a Korean conversational speech database in the emergency medical domain (응급의료 영역 한국어 음성대화 데이터베이스 구축)

  • Kim, Sunhee;Lee, Jooyoung;Choi, Seo Gyeong;Ji, Seunghun;Kang, Jeemin;Kim, Jongin;Kim, Dohee;Kim, Boryong;Cho, Eungi;Kim, Hojeong;Jang, Jeongmin;Kim, Jun Hyung;Ku, Bon Hyeok;Park, Hyung-Min;Chung, Minhwa
    • Phonetics and Speech Sciences
    • /
    • v.12 no.4
    • /
    • pp.81-90
    • /
    • 2020
  • This paper describes a method of building Korean conversational speech data in the emergency medical domain and proposes an annotation method for the collected data in order to improve speech recognition performance. To suggest future research directions, baseline speech recognition experiments were conducted by using partial data that were collected and annotated. All voices were recorded at 16-bit resolution at 16 kHz sampling rate. A total of 166 conversations were collected, amounting to 8 hours and 35 minutes. Various information was manually transcribed such as orthography, pronunciation, dialect, noise, and medical information using Praat. Baseline speech recognition experiments were used to depict problems related to speech recognition in the emergency medical domain. The Korean conversational speech data presented in this paper are first-stage data in the emergency medical domain and are expected to be used as training data for developing conversational systems for emergency medical applications.

Performance Improvement Methods of a Spoken Chatting System Using SVM (SVM을 이용한 음성채팅시스템의 성능 향상 방법)

  • Ahn, HyeokJu;Lee, SungHee;Song, YeongKil;Kim, HarkSoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.6
    • /
    • pp.261-268
    • /
    • 2015
  • In spoken chatting systems, users'spoken queries are converted to text queries using automatic speech recognition (ASR) engines. If the top-1 results of the ASR engines are incorrect, these errors are propagated to the spoken chatting systems. To improve the top-1 accuracies of ASR engines, we propose a post-processing model to rearrange the top-n outputs of ASR engines using a ranking support vector machine (RankSVM). On the other hand, a number of chatting sentences are needed to train chatting systems. If new chatting sentences are not frequently added to training data, responses of the chatting systems will be old-fashioned soon. To resolve this problem, we propose a data collection model to automatically select chatting sentences from TV and movie scenarios using a support vector machine (SVM). In the experiments, the post-processing model showed a higher precision of 4.4% and a higher recall rate of 6.4% compared to the baseline model (without post-processing). Then, the data collection model showed the high precision of 98.95% and the recall rate of 57.14%.

Sentimental Analysis of SW Education News Data (SW 교육 뉴스데이터의 감성분석)

  • Park, SunJu
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.1
    • /
    • pp.89-96
    • /
    • 2017
  • Recently, a number of researches actively focus on the contents and sensitivity of information distributed through SNS as smartphones and SNS gained its popularity. In this paper, we collected online news data about SW education, extracted words after morphological analysis, and analyzed emotions of collected news data by calculating sentimental score of each news datum. Also, the accuracy of the calculated sentimental score was examined. As a result, the number of news related to 'SW education' in the collection period was about 189 per month, and the average of sentimental score was 0.7, which signifies the news related to 'SW education' was emotionally positive. We were positive about the importance of SW education and the policy implementation, but there were negative views on the specific method for the realization. That is, a lack of SW education environment and its education method, a problem related to improvement of SW developers and improvement of their labor conditions, and increase of private education in coding were the factors for the negative viewers.

Design and Implementation of Geographic Education Website Based on the Google Earth (구글어스 기반의 지리교육 사이트 설계 및 구현)

  • Lee, Sun-Ju;Kang, Young-Ok
    • Spatial Information Research
    • /
    • v.18 no.2
    • /
    • pp.13-24
    • /
    • 2010
  • The purpose of this research is to explore the possibility of geographic education by implementing the map-based geographic education site which mashed up with Google earth by referring the various materials of geographic education which exist in on-line and off-line. In recent years map-based geographic education is required by the radical change of geoweb environments, but there have been few researches in this field. This research is folded up as follows: First, we designed the contents through the textbook analysis and then collect various data related to the contents such as pictures, video clips, conceptual map, etc. which are required to explain the concept. Second, we mashed up the collected data on the Google earth by using the Google's open API. Third, we implemented the geographic education website based on the classification of contents in textbook and the various collected data. This research is important in both that it explores the possibility of the map-based education rather than the text-based education in the geographic field which handles mainly the space and finds the best method to express the various concepts of the textbook on the geoweb environments.

Design and Implementation of Traffic Information Service based on Crowd Sourcing (크라우드 소싱 기반의 교통 정보 서비스 설계 및 구현)

  • Kim, Garam;Park, Dohun;Yoo, Jaesoo;Bok, Kyoungsoo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • To provide real-time traffic conditions, crowd sourcing based traffic information services in which users directly report and share traffic conditions are being developed. However, the existing traffic information service provides limited traffic conditions because it only shares information reported by specific service participants. In this paper, we design and develop a crowd sourcing based traffic information service that provides real-time traffic conditions by collecting direct reports from users and public traffic conditions. The proposed service allows users to directly report traffic conditions by voice and text, and collects and integrates traffic conditions published by external organizations. The collected traffic conditions are provided in real time through a push service, and new traffic conditions are transmitted when the user's location changes. The proposed service can report traffic conditions and share real-time traffic conditions through an Android app.