• Title/Summary/Keyword: 텍스트 마이닝. CONCOR 분석

Search Result 45, Processing Time 0.02 seconds

The Study on the patient safety culture convergence research topics through text mining and CONCOR analysis (텍스트마이닝 및 CONCOR 분석을 활용한 환자안전문화 융복합 연구주제 분석)

  • Baek, Su Mi;Moon, Inn Oh
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.359-367
    • /
    • 2021
  • The purpose of this study is to analyze domestic patient safety culture research topics using text mining and CONCOR analysis. The research method was conducted in the stages of data collection, data preprocessing, text mining and social network analysis, and CONCOR analysis. A total of 136 articles were analyzed excluding papers that were not published. Data analysis was performed using Textom and UCINET programs. As a result of this study, TF (frequency) of patient safety culture-related studies showed that patient safety was the highest, and TF-IDF (importance in documents) was highest in nursing. As a result of the CONCOR analysis, a total of seven clusters were derived: knowledge and attitude, communication, medical service, team, work environment, structure, organization and management that constitute the patient safety culture. In the future, it is necessary to conduct research on the relationship between the establishment of a patient safety culture and patient outcomes.

Analysis of Research Trends in Elder Abuse Using Text Mining : Academic Papers from 2004 to 2021. (텍스트 마이닝 분석을 통한 노인학대 관련 연구 동향 분석 : 2004년~2021년까지 발행된 국내 학술논문을 중심으로)

  • Youn, Ki-Hyok
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.4
    • /
    • pp.25-40
    • /
    • 2022
  • This study aimed to understand the increasing number of elder abuses in South Korea, where entry into the super-aged society is imminent, by implementing text mining analysis. Korean Academic journals were obtained from 2004, the establishment year of the senior care agency, to 2021. We performed natural language processing of the titles, keywords, and abstracts and divided them into three segments of periods to identify latent meanings in the data. The results illustrated that the first section included 81 papers, the second 64, and the third 104 respectively, averaging 13.8 annually, which increased its numbers from 2014 until the decrease below the annual average in 2020. Word frequency demonstrated that the common keywords of the entire segments were 'elder abuse,' 'elders,' 'influences,' 'factors,' 'recognition,' 'family,' 'society,' 'prevention plans,' 'experiences,' 'abused elders,' 'abuse prevention,' 'depression,' etc., in consecutive order. TF-IDF indicated that 'influences,' 'recognition,' 'society,' 'prevention plans,' 'abuse prevention,' 'experiences,' 'depression,' etc., were the common keywords of all divisions. Network text analysis displayed that the commonly represented keywords were 'elder abuse,' 'elders,' 'influences,' 'factors,' 'characteristics,' 'recognition,' 'family,' 'prevention plans,' 'society,' 'abuse prevention,' and 'experiences' in the entire sections. concor analysis presented that the first segment consisted of 5 groups, the second 7, and the third 6. We suggest future directions for elder abuse research based on the results.

Analysis of Work-Related Musculoskeletal Disorders Research Trends Using Keyword Frequency Analysis and CONCOR Technique

  • Geon-Hui Lee;Seo-Yeon Choi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.8
    • /
    • pp.137-144
    • /
    • 2023
  • One of the methods being suggested as a way to address social issues is the utilization of big data analysis techniques. In this study, we utilized keyword network analysis and CONCOR analysis techniques to analyze the research trends on work-related musculoskeletal disorders. The findings of this study are as follows: Firstly, the number of papers on work-related musculoskeletal disorders has been consistently increasing, with an average of over 33 articles published per year since the investigation of musculoskeletal risk factors in 2003. The publication rate showed an increase from 2007 to 2009. Secondly, the frequency of the top keywords identified through text mining were as follows: work (4,940), musculoskeletal disorders (2,197), symptoms (1,836), related (1,769), musculoskeletal system (1,421). Thirdly, the CONCOR analysis resulted in the formation of four clusters: ' Musculoskeletal disorder treatment', 'Occupational health and safety management', 'Work environment assessment', and ' Workplace environment measurement'. It is expected that this study will contribute to the development of research on musculoskeletal disorders and provide various directions for future studies.

Analysis of trends in domestic research on addiction using text mining and CONCOR (텍스트마이닝과 CONCOR을 활용한 중독 관련 국내 연구 동향 분석)

  • Sol-Ji Lee;Ki-Hyok Youn
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.6
    • /
    • pp.99-110
    • /
    • 2023
  • This study analyzed 817 articles published in Korean professional journals over the past three years, from 2020 to 2022, using text mining techniques to identify trends in addiction research in Korea and explore development directions. The analysis results are as follows. First, as a result of the analysis of the top keywords, online addiction studies such as smartphones, games, Internet, gambling, and relationship addiction were prominent as the top keywords. Second, as a result of TF-IDF analysis, many addiction studies related to behavioral addiction such as smartphones, games, the Internet, and work addiction have been conducted over the past three years, and in particular, there are many studies on addiction problems such as smartphones, games, and the Internet that have not yet been clinically diagnosed as addiction problems. This is the same as the result of word frequency analysis, and it can be interpreted that recent studies have been remarkably conducted on more diverse addiction problems. Third, the 2-gram analysis shows that words that mainly correspond to behavioral addiction, such as smartphones, games, and the Internet, appear side by side with the keyword addiction, and among them, words paired with smartphones are mentioned a lot in research papers and are being studied. Fourth, as a result of the CONCOR analysis, there were five clusters: a study on universal addiction issues such as alcohol use disorders and the Internet, a study of recovery on drug and gambling addiction, a study on mobile devices and media addiction, a study on the latest trends related to behavioral addiction, and other addiction issues. Finally, based on the results of this study, a direction for future addiction-related research was suggested.

An Analysis of Research Trends in Computational Thinking using Text Mining Technique (텍스트 마이닝 기법을 활용한 컴퓨팅 사고력 연구 동향 분석)

  • Lee, Jaeho;Jang, Junhyung
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.6
    • /
    • pp.543-550
    • /
    • 2019
  • In 2006, Janet Wing defined computational thinking and operated SW education as a formal curriculum in the UK in 2013. This study collected related research papers by using computational thinking, which has recently increased in importance, and analyzed it using text mining. In the first, CONCOR analysis was conducted with the keyword of computational thinking. In the second, text mining of the components of computational thinking was selected by the repr23esentative academic journals at domestic and foreign. As a result of the two-time analysis, first, abstraction, algorithm, data processing, problem decomposition, and pattern recognition were the core of the study of computational thinking component. Second, research on convergence education centered on computational thinking and science and mathematics subjects was actively conducted. Third, research on computational thinking has been expanding since 2010. Research and development of the classification and definition of computational thinking and components and applying them to education sites should be conducted steadily.

Social perception of the Arduino lecture as seen in big data (빅데이터 분석을 통한 아두이노 강의에 대한 사회적 인식)

  • Lee, Eunsang
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.935-945
    • /
    • 2021
  • The purpose of this study is to analyze the social perception of Arduino lecture using big data analysis method. For this purpose, data from January 2012 to May 2021 were collected using the Textom website as a keyword searched for 'arduino + lecture' in blogs, cafes, and news channels of NAVER website. The collected data was refined using the Textom website, and text mining analysis and semantic network analysis were performed by opening the Textom website, Ucinet 6, and Netdraw programs. As a result of text mining analysis such as frequency analysis, TF-IDF analysis, and degree centrality it was confirmed that 'education' and 'coding' were the top keywords. As a result of CONCOR analysis for semantic network analysis, four clusters can be identified: 'Arduino-related education', 'Physical computing-related lecture', 'Arduino special lecture', and 'GUI programming'. Through this study, it was possible to confirm various meaningful social perceptions of the general public in relation to Arduino lecture on the Internet. The results of this study will be used as data that provides meaningful implications for instructors preparing for Arduino lectures, researchers studying the subject, and policy makers who establish software education or coding education and related policies.

A Study on the Purchasing Factors of Color Cosmetics Using Big Data: Focusing on Topic Modeling and Concor Analysis (빅데이터를 활용한 색조화장품의 구매 요인에 관한 연구: 토픽모델링과 Concor 분석을 중심으로)

  • Eun-Hee Lee;Seung- Hee Bae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.724-732
    • /
    • 2023
  • In this study, we tried to analyze the characteristics of color cosmetics information search and the major information of interest in the color cosmetics market after COVID-19 shown in the text mining analysis results by collecting data on online interest information of consumers in the color cosmetics market after COVID-19. In the empirical analysis, text mining was performed on all documents such as news, blogs, cafes, and web pages, including the word "color cosmetics". As a result of the analysis, online information searches for color cosmetics after COVID-19 were mainly focused on purchase information, information on skin and mask-related makeup methods, and major topics such as interest brands and event information. As a result, post-COVID-19 color cosmetics buyers will become more sensitive to purchase information such as product value, safety, price benefits, and store information through active online information search, so a response strategy is required.

A Study of the Consumer Major Perception of Packaging Using Big Data Analysis -Focusing on Text Mining and Semantic Network Analysis- (빅데이터 분석을 통한 패키징에 대한 소비자의 주요 인식 조사 -텍스트 마이닝과 의미연결망 분석을 중심으로-)

  • Kang, Wook-Geon;Ko, Eui-Suk;Lee, Hak-Rae;Kim, Jai-neung
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.4
    • /
    • pp.15-22
    • /
    • 2018
  • The purpose of this study is to investigate the consumer perception of packaging using big data analysis. This study use text mining to extract meaningful words from text and semantic network analysis to analyze connectivity and propagation trends. Data were collected by dividing the 'packaging(Korean)' and 'packaging(English)'. This study visualized the word network structure of the two key words and classified them into four groups with similar meaning through CONCOR analysis. The group name was specified based on the words constituting the classified group. These groups are a major category of consumers' perception of packaging. Especially cosmetics and design have high frequency of words and high centrality. Therefore it can be expected that the packaging design is perceived as important in the cosmetics industry. This study predicts consumers' perception of packaging so it can be a basis for future research and industry development.

Study on Chinese Consumers' Perceptions of Samsung Smartphones through Social Media Data Analysis (소셜 미디어 데이터 분석을 통한 중국 소비자의 삼성 스마트폰에 대한 인식 연구)

  • Cui Ran;Inyong Nam
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.311-321
    • /
    • 2024
  • This study comprehensively analyzed the perceptions of Chinese consumers who have and have not purchased Samsung smartphones, based on data from the social media platform Weibo. Various big data analysis techniques were used, including text mining, frequency analysis, centrality analysis, semantic network analysis, and CONCOR analysis. The results indicate that positive perceptions of Samsung smartphones include aspects such as design aesthetics, camera functionality, AI features, screen quality, specifications, and performance, and their status as a premium brand. On the other hand, negative perceptions include issues with pricing, a yellow tint in photos, slow charging speeds, and safety concerns. These findings will provide a crucial basis for making significant improvements in Samsung's market strategy in China.

Trend Analysis of Barrier-free Academic Research using Text Mining and CONCOR (텍스트 마이닝과 CONCOR을 활용한 배리어 프리 학술연구 동향 분석)

  • Jeong-Ki Lee;Ki-Hyok Youn
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.2
    • /
    • pp.19-31
    • /
    • 2023
  • The importance of barrier free is being highlighted worldwide. This study attempted to identify barrier-free research trends using text mining. Through this, it was intended to help with research and policies to create a barrier free environment. The analysis data is 227 papers published in domestic academic journals from 1996 when barrier free research began to 2022. The researcher converted the title, keywords, and abstract of an academic thesis into text, and then analyzed the pattern of the thesis and the meaning of the data. The summary of the research results is as follows. First, barrier-free research began to increase after 2009, with an annual average of 17.1 papers being published. This is related to the implementation guidelines for the barrier-free certification system that took effect on July 15, 2008. Second, results of barrier-free text mining i) As a result of word frequency analysis of top keywords, important keywords such as barrier free, disabled, design, universal design, access, elderly, certification, improvement, evaluation, and space, facility, and environment were searched. ii) As a result of TD-IDF analysis, the main keywords were universal design, design, certification, house, access, elderly, installation, disabled, park, evaluation, architecture, and space. iii) As a result of N-Ggam analysis, barrier free+certification, barrier free+design, barrier free+barrier free, elderly+disabled, disabled+elderly, disabled+convenience facilities, the disabled+the elderly, society+the elderly, convenience facilities+installation, certification+evaluation index, physical+environment, life+quality, etc. appeared in a related language. Third, as a result of the CONCOR analysis, cluster 1 was barrier-free issues and challenges, cluster 2 was universal design and space utilization, cluster 3 was Improving Accessibility for the Disabled, and cluster 4 was barrier free certification and evaluation. Based on the analysis results, this study presented policy implications for vitalizing barrier-free research and establishing a desirable barrier free environment.