• Title/Summary/Keyword: 텍스트 데이터 분석

Search Result 1,111, Processing Time 0.025 seconds

Text Big Data Analysis and Summary for Free Semester Operational Plan Document (자유학기제 운영계획서에 대한 텍스트 빅데이터 분석 및 요약)

  • Lee, Suan;Park, Beomjun;Kim, Minkyu;Shin, Hye Sook;Kim, Jinho
    • The Journal of Korean Association of Computer Education
    • /
    • v.22 no.3
    • /
    • pp.135-146
    • /
    • 2019
  • Big data analysis is actively used for collecting and analyzing direct information on related topics in each field of society. Applying big data analysis technology in education field is increasingly interested in Korea, because applying this technology helps to identify the effectiveness of education methods and policies and applying them for policy formulation. In this paper, we propose our approach of utilizing big data analysis technology in education field. We focus on free semester program, one of the current core education policies, and we analyze the main points of interests and differences in the free semester through analysis and visualization of texts that are written on the operation reports prepared by each school. We compare regional differences in key characteristics and interests based on the free semester operation reports from middle schools particularly at Seoul and Gangwon-do regions. In conclusion, applying and utilizing big data analysis technology according to the needs and requirements of education field is a great significance.

Text Augmentation Using Hierarchy-based Word Replacement

  • Kim, Museong;Kim, Namgyu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.57-67
    • /
    • 2021
  • Recently, multi-modal deep learning techniques that combine heterogeneous data for deep learning analysis have been utilized a lot. In particular, studies on the synthesis of Text to Image that automatically generate images from text are being actively conducted. Deep learning for image synthesis requires a vast amount of data consisting of pairs of images and text describing the image. Therefore, various data augmentation techniques have been devised to generate a large amount of data from small data. A number of text augmentation techniques based on synonym replacement have been proposed so far. However, these techniques have a common limitation in that there is a possibility of generating a incorrect text from the content of an image when replacing the synonym for a noun word. In this study, we propose a text augmentation method to replace words using word hierarchy information for noun words. Additionally, we performed experiments using MSCOCO data in order to evaluate the performance of the proposed methodology.

Social perception of the Arduino lecture as seen in big data (빅데이터 분석을 통한 아두이노 강의에 대한 사회적 인식)

  • Lee, Eunsang
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.6
    • /
    • pp.935-945
    • /
    • 2021
  • The purpose of this study is to analyze the social perception of Arduino lecture using big data analysis method. For this purpose, data from January 2012 to May 2021 were collected using the Textom website as a keyword searched for 'arduino + lecture' in blogs, cafes, and news channels of NAVER website. The collected data was refined using the Textom website, and text mining analysis and semantic network analysis were performed by opening the Textom website, Ucinet 6, and Netdraw programs. As a result of text mining analysis such as frequency analysis, TF-IDF analysis, and degree centrality it was confirmed that 'education' and 'coding' were the top keywords. As a result of CONCOR analysis for semantic network analysis, four clusters can be identified: 'Arduino-related education', 'Physical computing-related lecture', 'Arduino special lecture', and 'GUI programming'. Through this study, it was possible to confirm various meaningful social perceptions of the general public in relation to Arduino lecture on the Internet. The results of this study will be used as data that provides meaningful implications for instructors preparing for Arduino lectures, researchers studying the subject, and policy makers who establish software education or coding education and related policies.

Trend Analysis of Korean Economy in the Economic Literature by text mining techniques (텍스트 마이닝 기법을 활용한 한국의 경제연구 동향 분석)

  • Song, Hye-Ji;Park, Kyoung-Soo;Jung, Hye-Eun;Song, Min
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2013.08a
    • /
    • pp.47-50
    • /
    • 2013
  • 빅데이터를 활용한 데이터 분석 기법 중 비정형 데이터 분석의 하나인 텍스트 마이닝 기법을 활용하여, 외국 학술지에 나타난 한국의 경제 분야 트렌드를 분석한다. 데이터베이스로 Web of Knowledge의 연구논문을 활용하였으며, 키워드 분석, 네트워크 분석, 토픽모델링 분석을 통해 연구 동향 및 지적구조를 파악하는 데 그 목적이 있다.

  • PDF

A study on the method of deriving the cause of social issues based on causal sentences (인과관계문형 기반 사회이슈 발생원인 도출 방법 연구)

  • Lee, Namyeon;Lee, Jae Hyung
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.167-176
    • /
    • 2021
  • With development of big data analysis technology, many studies to find social issues using texts mining techniques have been conducted. In order to derive social issues, previous studies performed in a way that collects a large amount of text data from news or SNS, and then analyzes issues based on text mining techniques such as topic modeling and terms network analysis. Social issues are the results of various social phenomena and factors. However, since previous studies focused on deriving social issues that are results of various causes, there are limitations to revealing the cause of the issues. In order to effectively respond to social issues, it is necessary not only to derive social issues, but also to be able to identify the causes of social issues. In this study, in order to overcome these limitations, we proposed a method of deriving the factors that cause social issues from texts related to social issues based on the theory of part of Korean linguistics. To do this, we collected news data related to social issues for three years from 2017 to 2019 and proposed a methodology to find causes based causal sentences based on text mining techniques.

Comparison and Analysis of Domestic and Foreign Sports Brands Using Text Mining and Opinion Mining Analysis (텍스트 마이닝과 오피니언 마이닝 분석을 활용한 국내외 스포츠용품 브랜드 비교·분석 연구)

  • Kim, Jae-Hwan;Lee, Jae-Moon
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.6
    • /
    • pp.217-234
    • /
    • 2018
  • In this study, big data analysis was conducted for domestic and international sports goods brands. Text Mining, TF-IDF, Opinion Mining, interestity graph were conducted through the social matrix program Textom and the fashion data analysis platform MISP. In order to examine the recent recognition of sports brands, the period of study is limited to 1 year from January 1, 2017 to December 31, 2017. As a result of analysis, first, we could confirm the products representing each brand. Second, I could confirm the marketing that represents each brand. Third, the common words extracted from each brand were identified. Fourth, the emotions of positive and negative of each brand were confirmed.

Feature selection for text data via topic modeling (토픽 모형을 이용한 텍스트 데이터의 단어 선택)

  • Woosol, Jang;Ye Eun, Kim;Won, Son
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.6
    • /
    • pp.739-754
    • /
    • 2022
  • Usually, text data consists of many variables, and some of them are closely correlated. Such multi-collinearity often results in inefficient or inaccurate statistical analysis. For supervised learning, one can select features by examining the relationship between target variables and explanatory variables. On the other hand, for unsupervised learning, since target variables are absent, one cannot use such a feature selection procedure as in supervised learning. In this study, we propose a word selection procedure that employs topic models to find latent topics. We substitute topics for the target variables and select terms which show high relevance for each topic. Applying the procedure to real data, we found that the proposed word selection procedure can give clear topic interpretation by removing high-frequency words prevalent in various topics. In addition, we observed that, by applying the selected variables to the classifiers such as naïve Bayes classifiers and support vector machines, the proposed feature selection procedure gives results comparable to those obtained by using class label information.

Frequency and Social Network Analysis of the Bible Data using Big Data Analytics Tools R (R을 이용한 성경 데이터의 빈도와 소셜 네트워크 분석)

  • Ban, ChaeHoon;Ha, JongSoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.93-96
    • /
    • 2018
  • Big datatics technology that can store and analyze data and obtain new knowledge has been adjusted for importance in many fields of the society. Big data is emerging as an important problem in the field of information and communication technology, but the mind of continuous technology is rising. R, a tool that can analyze big data, is a language and environment that enables information analysis of statistical bases. In this thesis, we use this to analyze the Bible data. R is used to investigate the frequency of what text is distributed and analyze the Bible through analysis of social network.

  • PDF

Analysis of Weather News using Big Data Analytics Tools R (빅데이터 분석도구 R을 활용한 기상뉴스 데이터분석)

  • Kim, YongSu;Ban, ChaeHoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.448-450
    • /
    • 2016
  • 정보기술과 디지털 경제의 확산으로 대규모의 데이터가 생산되는 정보화시대에서 빅 데이터의 중요성이 강조되고 있으며 다양한 분야에서 이를 응용하고 있다. 빅 데이터 분석도구인 R은 통계 기반의 정보 분석을 가능하게 하는 언어와 환경이다. 본 논문에서는 R을 이용하여 기상뉴스에 나타난 기상관련 빅 데이터를 분석한다. 다양한 뉴스에서 기상 관련 데이터를 수집하고 어떠한 텍스트가 분포되어 있는지 빈도 조사를 수행한다.

  • PDF

Movie Corpus Emotional Analysis Using Emotion Vocabulary Dictionary (감정 어휘 사전을 활용한 영화 리뷰 말뭉치 감정 분석)

  • Jang, Yeonji;Choi, Jiseon;Park, Seoyoon;Kang, Yejee;Kang, Hyerin;Kim, Hansaem
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.379-383
    • /
    • 2021
  • 감정 분석은 텍스트 데이터에서 인간이 느끼는 감정을 다양한 감정 유형으로 분류하는 것이다. 그러나 많은 연구에서 감정 분석은 긍정과 부정, 또는 중립의 극성을 분류하는 감성 분석의 개념과 혼용되고 있다. 본 연구에서는 텍스트에서 느껴지는 감정들을 다양한 감정 유형으로 분류한 감정 말뭉치를 구축하였는데, 감정 말뭉치를 구축하기 위해 심리학 모델을 기반으로 분류한 감정 어휘 사전을 사용하였다. 9가지 감정 유형으로 분류된 한국어 감정 어휘 사전을 바탕으로 한국어 영화 리뷰 말뭉치에 9가지 감정 유형의 감정을 태깅하여 감정 분석 말뭉치를 구축하고, KcBert에 학습시켰다. 긍정과 부정으로 분류된 데이터로 사전 학습된 KcBert에 9개의 유형으로 분류된 데이터를 학습시켜 기존 모델과 성능 비교를 한 결과, KcBert는 다중 분류 모델에서도 우수한 성능을 보였다.

  • PDF