최근 학술 생태계의 새로운 이슈 중 하나인 부실 학술지를 두고 판별 기준의 모호성에 대한 논쟁이 불거지고 있다. 이러한 논란은 연구자들에게 부실 학술지의 부실성이 무엇인지에 대해 혼란을 주고 있다. 이에 본 연구는 국내 연구자들이 부실 학술지를 어떻게 인식하고, 또 어떻게 판별하고 있는지를 파악하고자 했다. 이를 위해 한국의 대표적인 연구자 커뮤니티인 생물학연구정보센터(BRIC), 하이브레인넷, 김박사넷, 건전학술활동지원시스템(SAFE)을 대상으로, 2023년 11월까지 작성된 관련 게시글과 댓글 총 2,484건을 수집하였다. 수집된 텍스트 데이터에 대한 주제 분석을 위해 먼저 데이터를 3개의 큰 범주인 학술지, 출판사, 연구자로 구분하였고, 해당 범주에 따라 11가지의 세부 주제 태그로 분류하였다. 이후 세부 주제 태그의 조합에 근거하여 다음과 같은 부실학술지 관련 6개의 주요 논쟁점을 도출하였다. 첫째, 부실 학술지에 대한 연구자들의 혼란과 연구 실적에 대한 논란이다. 둘째, 부실 학술지에 대해 부정적인 인식을 가진 연구자들의 견해이다. 셋째, 부실 학술지에 대해 긍정적인 인식을 가진 연구자들의 견해이다. 넷째, 학술지 수준에 대한 평가 기준과 국내 학술지 수준에 대한 문제 제기이다. 다섯째, OA 확산에 따른 출판 관행의 변화와 이에 따른 문제 제기이다. 여섯째, 학술 생태계의 전반적인 문제에 대한 논의이다. 본 연구는 국내의 연구자들의 부실 학술지에 대한 인식을 정성적 측면에서 고려한 연구로서, 국내의 부실 학술지 논란에 대한 근본적인 이해를 형성하는 데 도움이 될 것으로 기대한다.
주가 예측은 학문적으로나 실용적으로나 중요한 문제이기에, 주가 예측에 관련된 연구가 활발히 진행되었다. 빅 데이터 시대에 도입하면서, 빅 데이터를 결합한 주가 예측 연구도 활발히 진행되고 있다. 다수의 데이터를 기반으로 기계 학습을 이용한 연구가 주를 이룬다. 특히 언론의 효과를 접목한 연구 방법들이 주목을 받고 있는데, 그중 온라인 뉴스를 분석하여 주가 예측에 활용하는 연구가 주를 이루고 있다. 기존 연구들은 온라인 뉴스가 개별 회사에 대한 미치는 영향을 주로 살펴보았다. 또한, 관련성이 높은 기업끼리 서로 영향을 주는 것을 고려하는 방법도 최근에 연구되고 있다. 이는 동질성을 가지는 산업군에 대한 효과를 살펴본 것인데, 기존 연구에서 동질성을 가지는 산업군은 국제 산업 분류 표준에 따른다. 즉, 기존 연구들은 국제 산업 분류 표준으로 나뉜 산업군이 동질성을 가진다는 가정하에서 분석을 시행하였다. 하지만 기존 연구들은 영향력을 가지는 회사를 고려하지 못한 채 예측하였거나 산업군 내에서 이질성이 존재하는 점을 반영하지 못했다는 한계점을 가진다. 본 연구는 산업군 내에 이질성이 존재함을 밝히고, 이질성을 반영하지 못한 기존 연구의 한계점을 K-평균 군집 분석을 적용하여, 주가에 영향을 미치는 산업군의 동질적인 효과를 반영할 수 있는 방법론을 제안하였다. 방법론이 적합하다는 것을 증명하기 위해 3년간의 온라인 뉴스와 주가를 통해 실험한 결과, 다수의 경우에서 본 논문에서 제시한 방법이 좋은 결과를 나타냄을 확인할 수 있었으며, 국제 산업 분류 표준 산업군 내에서 이질성이 클수록 본 논문에서 제시한 방법이 좋은 효과를 보인다는 것을 확인할 수 있었다. 본 연구는 국제 산업 분류 표준으로 나누어진 기업들이 높은 동질성을 가지지 않는 다는것을 밝히고 이를 반영한 예측 모형의 효율성을 입증하였다는 점에서 의의를 가진다.
기존 웹 페이지 자동분류 연구는 일반적으로 학습 기반인 kNN(k-Nearest Neighbor), SVM(Support Vector Machine)과 통계 기반인 Bayesian classifier, NNA(Neural Network Algorithm)등 여러 종류의 분류작업에서 입증된 분류 기법을 사용하여 웹 페이지를 분류하였다. 하지만 인터넷 상의 방대한 양의 웹 페이지와 각 페이지로부터 나오는 많은 양의 자질들을 처리하기에는 공간적, 시간적 문제에 직면하게 된다. 그리고 분류 대상을 표현하기 위해 흔히 사용하는 단일(uni-gram) 자질 기반에서는 자질들 간의 관계 분석을 통해 자질에 정확한 의미를 부여하기 힘들다. 특히 본 논문의 분류 대상인 한글 웹 페이지의 자질인 한글 단어는 중의적인 의미를 가지는 경우가 많기 때문에 이러한 중의성이 분류 작업에 많은 영향을 미칠 수 있다. 잠재적 의미 분석 LSA(Latent Semantic Analysis) 분류기법은 선형 기법인 특이치 분해 SVD(Singular Value Decomposition)을 통해 행렬의 분해 및 차원 축소(dimension reduction)를 수행하여 대용량 데이터 집합의 분류를 효율적으로 수행하고, 또한 차원 축소를 통해 새로운 의미공간을 생성하여 자질들의 중의적 의미를 분석할 수 있으며 이 새로운 의미공간상에 분류 대상을 표현함으로써 분류 대상의 잠재적 의미를 분석할 수 있다. 하지만 LSA의 차원 축소는 전체 데이터의 표현 정도만을 고려할 뿐 분류하고자 하는 범주를 고려하지 않으며 또한 서로 다른 범주 간의 차별성을 고려하지 않기 때문에 축소된 차원 상에서 분류 시 서로 다른 범주 데이터간의 모호한 경계로 인해 안정된 분류 성능을 나타내지 못한다. 이에 본 논문은 새로운 의미공간(semantic space) 상에서 서로 다른 범주사이의 명확한 구분을 위한 특별한 차원 선택을 수행하여 최적의 차원 선택과 안정된 분류성능을 보이는 최적의 지도적 LSA을 소개한다. 제안한 지도적 LSA 방법은 기본 LSA 및 다른 지도적 LSA 방법들에 비해 저 차원 상에서 안정되고 더 높은 성능을 보였다. 또한 추가로 자질 생성 및 선택 시 불용어의 제거와 자질에 대한 가중치를 통계적인 학습을 통해 얻음으로써 더 높은 학습효과를 유도하였다.
최근 소셜미디어는 전세계적 커뮤니케이션 도구로서 사용에 전문적인 지식이나 기술이 필요하지 않기 때문에 이용자들로 하여금 콘텐츠의 실시간 생산과 공유를 가능하게 하여 기존의 커뮤니케이션 양식을 새롭게 변화시키고 있다. 특히 새로운 소통매체로서 국내외의 사회적 이슈를 실시간으로 전파하면서 이용자들이 자신의 의견을 지인 및 대중과 소통하게 하여 크게는 사회적 변화의 가능성까지 야기하고 있다. 소셜미디어를 통한 정보주체의 변화로 인해 데이터는 더욱 방대해지고 '빅데이터'라 불리는 정보의 '초(超)범람'을 야기하였으며, 이러한 빅데이터는 사회적 실제를 이해하기 위한 새로운 기회이자 의미 있는 정보를 발굴해 내기 위한 새로운 연구분야로 각광받게 되었다. 빅데이터를 효율적으로 분석하기 위해 다양한 연구가 활발히 이루어지고 있다. 그러나 지금까지 소셜미디어를 대상으로 한 연구는 개괄적인 접근으로 제한된 분석에 국한되고 있다. 이를 적절히 해결하기 위해 본 연구에서는 트위터 상에서 실시간으로 방대하게 생성되는 빅스트림 데이터의 효율적 수집과 수집된 문헌의 다양한 분석을 통한 새로운 정보와 지식의 마이닝을 목표로 사회적 이슈를 포착하기 위한 실시간 트위터 트렌드 마이닝 시스템을 개발 하였다. 본 시스템은 단어의 동시출현 검색, 질의어에 의한 트위터 이용자 시각화, 두 이용자 사이의 유사도 계산, 트렌드 변화에 관한 토픽 모델링 그리고 멘션 기반 이용자 네트워크 분석의 기능들을 제공하고, 이를 통해 2012년 한국 대선을 대상으로 사례연구를 수행하였다. 본 연구를 위한 실험문헌은 2012년 10월 1일부터 2012년 10월 31일까지 약 3주간 1,737,969건의 트윗을 수집하여 구축되었다. 이 사례연구는 최신 기법을 사용하여 트위터에서 생성되는 사회적 트렌드를 마이닝 할 수 있게 했다는 점에서 주요한 의의가 있고, 이를 통해 트위터가 사회적 이슈의 변화를 효율적으로 추적하고 예측하기에 유용한 도구이며, 멘션 기반 네트워크는 트위터에서 발견할 수 있는 고유의 비가시적 네트워크로 이용자 네트워크의 또 다른 양상을 보여준다.
한국, 중국, 일본 정부는 철도에 대한 종합연구기관을 설립하여 운영하고 있다. 한국철도기술연구원, 중국철도과학연구원, 일본철도종합기술연구소는 각 국가의 대표적인 철도종합연구기관으로서, 철도원천기술 및 시스템기술개발에 집중하고 있다. 이 기관들은 특허와 논문 실적을 지속적으로 도출하고 있으며, 특허 및 논문을 통해 각 기관들의 연구성과를 비교 분석할 수 있다. 윈텔립스 DB를 이용하여 2000년 이후 공개특허를 비교한 결과, 특허의 양적 경쟁력에서는 한국철도기술연구원이 1,923건으로 가장 앞서는 것으로 나타났고, 질적 경쟁력에서는 한국철도기술연구원이 토목분야의 특허시장지수가 1.04, 특허영향력지수가 1.33으로 높게 나타났으며 일본철도종합기술연구소가 철도전력분야 특허시장지수가 1.16, 특허영향력지수가 1.32로 높게 나타났다. 세 기관 모두 자국 특허출원 비중이 매우 높게 나타났으나, 한국철도기술연구원이 상대적으로 PCT 출원 108건 등 해외 지식재산권 경쟁력 확보노력을 가장 많이 하는 것으로 나타났다. Scopus DB를 이용하여 논문발표를 비교한 결과, 중국철도과학연구원이 1,527건으로 가장 많은 논문을 발표하였지만, 2015년부터는 한국철도기술연구원이 매년 100건 이상의 논문을 발표하며 가장 많은 실적을 나타냈다. 피인용도를 중심으로 논문영향력을 살펴본 결과, 한국철도기술연구원의 논문영향력지수가 0.45로서 두 기관보다 높은 경쟁력을 갖고 있었다. 향후 세 기관의 특허·논문 정보에 대한 텍스트마이닝 등 빅데이터분석을 활용하여, 기관별 중점연구영역 및 유망기술분야를 도출하고, 과학적 증거에 기반한 철도기술개발 중장기발전계획 등의 수립이 필요할 것으로 판단된다.
최근 헬스케어 산업의 증가와 웨어러블 디바이스 및 건강 관련 모니터링 기술의 발전은 자신의 행동을 측정하고 계량화하는 자아정량화 운동의 부흥을 촉진시키고 있다. 퍼스널 헬스케어를 통해 사용자들은 자신의 건강관련 행동을 정량적으로 인지하고 건강관련 인식을 향상할 수 있게 되었다. 본 연구는 사용자에게 전달되는 건강정보를 보다 효과적으로 전달하는 방법을 찾고 제안하고자 한다. 이를 위해 어플리케이션에서 피드백 유형(feedback type)의 비교반응과 정보 제공형태(presentation mode)의 심리적 효과에 대한 실험연구를 진행하였으며 이를 위해 피험자들의 건강 자가보존 성향을 측정하였다. 실험연구 결과, 비교조건과 텍스트 조건에서 사용자의 개인정량화 정보를 효과적으로 전달하는 것으로 나타났다. 또한 피험자의 건강 관련 자가 인지에 따라 건강 자가보존 성향 역시 증가하였다. 이러한 연구 결과 분석은 사용자의 건강 관련 행동 변화 유도의 관점에서 건강정보학 분야 연구의 사용자 행동유도성에 관한 학술적 방법론에 기여할 수 있으며 개인정보학 어플리케이션 설계 및 개발에 의미있는 기여를 할 수 있다. 또한 연구결과는 향후 웨어러블 디바이스의 지속적인 사용을 위한 요인 분석과 개인 트래킹 데이터 분석을 통한 효율적인 건강관리 등 헬스케어 산업에 새로운 통찰을 제공할 것이다.
4차 산업혁명이란 인공지능(AI), 사물인터넷(IoT), 로봇기술, 드론, 자율주행과 가상현실(VR) 등 정보통신 기술이 주도하는 차세대 산업혁명을 말하는 것으로, 광고 산업 발전에도 큰 영향을 미쳤다. 그러나 지금 전세계는 코로나 확산 방지를 위하여, 비접촉, 비대면 생활환경으로 급속도로 빠르게 변화하고 있다. 이에 따라 4차 산업혁명과 광고의 역할도 변화하고 있다. 따라서 본 연구에서는 코로나 19 이전과 이후의 4차산업 혁명과 광고의 변화를 살펴보기 위해 빅카인즈를 활용해서 텍스트 분석을 하였다. 코로나 19 이전인 2019년과 코로나 19 이후인 2020년을 비교하였다. LDA토픽 모형 분석과 딥러닝 기법인 Word2vec을 통해 주요 토픽과 문서분류를 하였다. 연구결과 코로나19 이전에는 정책, 콘텐츠, AI 등이 나타났으나, 코로나 이후에는 데이터를 활용한 금융, 광고, 배달 등으로 점차 영역이 확장되며, 더불어 인재양성 교육이 중요한 이슈로 나타난 것을 알 수 있었다. 또한, 코로나 19 이전에는 4차 산업혁명 기술과 관련된 광고를 활용하는 것이 주류를 이루었다면, 코로나 19 이후에는 참여, 협력, 일상 필요 등 좀 더 적극적으로 첨단기술 자체에 대한 교육과 인재양성 등에 대한 키워드가 두드러지게 나타나고 있다. 따라서 이러한 연구결과는 코로나 19 이후에 4차 산업혁명에서 광고의 나아갈 방향을 제시하면서, 이에 필요한 이론적, 실무적으로 적용할 수 있는 다각적인 전략을 제시하는 데 의의가 있다.
본 연구에서는 소셜 미디어 빅데이터 감성분석 방법을 통해 'MZ세대'에 대한 대중 감성을 살펴보았다. 분석을 위해 소비자 계정 SNS 텍스트를 살펴보고 내용상 외부 감성과 MZ세대 본인들의 감성을 분류하여 긍정 및 부정 감성 요인들을 제시하였다. 이에 따른 결론은 'MZ세대' 관련하여 호감과 흥미의 긍정정서가 72.1%로, 부정적인 감성비율 27.9 % 보다 높았다. 긍정감성에서 기성세대들은 'MZ세대의 개성과 당당함에 대한 호감', '새로운 가치관을 가진 MZ세대에 대한 흥미'를 보였다. 이에 비해 MZ세대들은 '자신들의 당당함, 발랄함 및 개성 세대라는 점'과 '소소한 성장주의'에 대한 호감을 갖고 있다. MZ세대 외부의 부정감성은 'MZ세대의 결혼기피, 취업난, 빚투자 및 퇴사 트랜드에 대해 걱정', '꼰대 취급하는 MZ 세대 미움', 'MZ세대와 대화하기 힘듦'으로 나타났다. 한편, MZ세대 본인들이 느끼는 부정감성은 '일반화에 대한 거부감', '세대 및 젠더 갈등과 기성세대보다 심한 경쟁에 대한 거부감', '풍요로운 시대의 상대적 실패감', '예고된 기후재앙 속에서 살아야하는 슬픔'으로 나타났다. 따라서 기성세대는 MZ세대를 일반화하여 바라볼 것이 아니라 개인으로 보아야 하며, 세대간 이해와 공감으로 갈등을 완화해야한다. 세대 갈등, 젠더 갈등 및 환경문제 해결을 위한 공동체적인 고민의 필요성도 있다.
본 연구는 72개 지자체의 74개 스마트시티 조례를 대상으로, 지자체 스마트시티 조례의 방향성을 확인하고자 토픽모델링을 활용하여 조례의 주요 키워드를 확인하고, 조례의 키워드에 따른 주제분류를 진행하였다. 분석결과 주요 키워드는 스마트도시위원회의 구성 및 운영에 관한 키워드가 조례 내에서 높은 빈도를 보였다. 조례에 대한 토픽모델링 Latent Dirichlet Allocation(LDA) 분석결과 관련 키워드에 따라 총 8개의 주제로 분류할 수 있었다. 구체적으로 주제-1(스마트시티 추진사항 보안), 주제-2(스마트시티 산업진흥), 주제-3(스마트시티 주민협의체 구성), 주제-4(스마트시티 추진체계 지원), 주제-5(개인정보 관리), 주제-6(스마트시티 데이터 활용), 주제-7(지능정보화 행정구현), 주제-8(스마트시티 홍보) 등으로, 주제의 비중은 주제-6, 주제-4, 주제-1 등의 순으로 나타났다. 권역별 주제분류는 수도권은 주제-5, 주제-6, 주제-8 의 비중이 높았고, 지방권은 주제-2, 주제-3, 주제-4의 비중이 높아 수도권은 스마트시티의 실질 운영 관련 주제가 높았고, 지방권은 스마트시티 추진을 위한 준비단계 관련 주제 비중이 높았다.
Kyu Sung Kim;Min Gyeong Kim;Francis Joseph Costello;Kun Chang Lee
한국컴퓨터정보학회논문지
/
제28권7호
/
pp.155-164
/
2023
본 논문은 온라인 크라우드펀딩 플랫폼에서 환경, 사회 및 지배구조 (ESG) 관련 내용이 자금 조달의 성공에 미치는 영향에 대해 조사한다. 최근, 산업에서 ESG의 중요성이 증가하고 있으며 ESG와 관련된 내용을 포함한 투자 제안도 증가하고 있다. 이에 따라, ESG 개념을 포함한 대부분의 투자 제안은 이러한 사회적 현상으로 인해 더 높은 펀딩 성공률을 보일 것이라는 관행적인 믿음이 존재한다. 우리는 투자 제안서의 어떤 특성이 투자의 증가와 관련이 있는지를 알아보기 위해 Kickstarter 데이터셋에서 9000개 이상의 온라인 사업 제안을 분석하여 조사했다. 먼저, 우리는 어휘 기반 측정과 특성 공학을 사용하여 환경과 사회 점수가 재무 지표와 어떻게 관련되는지를 결정했다. 다음 단계에서는 로지스틱 회귀분석을 사용하여 프로젝트 설명에 환경 및 사회적인 단어를 포함하는 것이 자금 조달에 미치는 영향을 연구했다. 일반적인 믿음과는 달리, ESG 문제를 중심으로 한 투자 제안이 소규모 사업가들에게는 성공할 가능성이 더 낮다는 것을 발견했다. 본 연구는 온라인 소규모 사업가의 환경에 대한 새로운 통찰력을 제공하며, 정보과학 및 크라우드펀딩 연구 분야에서의 새로운 연구 기회를 창출할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.