• Title/Summary/Keyword: 텍스트초록

Search Result 79, Processing Time 0.019 seconds

A Study on the Visual Representation of TREC Text Documents in the Construction of Digital Library (디지털도서관 구축과정에서 TREC 텍스트 문서의 시각적 표현에 관한 연구)

  • Jeong, Ki-Tai;Park, Il-Jong
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.3
    • /
    • pp.1-14
    • /
    • 2004
  • Visualization of documents will help users when they do search similar documents. and all research in information retrieval addresses itself to the problem of a user with an information need facing a data source containing an acceptable solution to that need. In various contexts. adequate solutions to this problem have included alphabetized cubbyholes housing papyrus rolls. microfilm registers. card catalogs and inverted files coded onto discs. Many information retrieval systems rely on the use of a document surrogate. Though they might be surprise to discover it. nearly every information seeker uses an array of document surrogates. Summaries. tables of contents. abstracts. reviews, and MARC recordsthese are all document surrogates. That is, they stand infor a document allowing a user to make some decision regarding it. whether to retrieve a book from the stacks, whether to read an entire article, etc. In this paper another type of document surrogate is investigated using a grouping method of term list. lising Multidimensional Scaling Method (MDS) those surrogates are visualized on two-dimensional graph. The distances between dots on the two-dimensional graph can be represented as the similarity of the documents. More close the distance. more similar the documents.

A Study on the Research Trends for Smart City using Topic Modeling (토픽 모델링을 활용한 스마트시티 연구동향 분석)

  • Park, Keon Chul;Lee, Chi Hyung
    • Journal of Internet Computing and Services
    • /
    • v.20 no.3
    • /
    • pp.119-128
    • /
    • 2019
  • This study aims to analyze the research trends on Smart City and to present implications to policy maker, industry professional, and researcher. Cities around globe have undergone the rapid progress in urbanization and the consequent dramatic increase in urban dwellings over the past few decades, and faced many urban problems in such areas as transportation, environment and housing. Cities around the globe are in a hurry to introduce Smart City to pursue a common goal of solving these urban problems and improving the quality of their lives. However, various conceptual approaches to smart city are causing uncertainty in setting policy goals and establishing direction for implementation. The study collected 11,527 papers titled "Smart City(cities)" from the Scopus DB and Springer DB, and then analyze research status, topic, trends based on abstracts and publication date(year) information using the LDA based Topic Modeling approaches. Research topics are classified into three categories(Services, Technologies, and User Perspective) and eight regarding topics. Out of eight topics, citizen-driven innovation is the most frequently referred. Additional topic network analysis reveals that data and privacy/security are the most prevailing topics affecting others. This study is expected to helps understand the trends of Smart City researches and predict the future researches.

Forecasting the Future Korean Society: A Big Data Analysis on 'Future Society'-related Keywords in News Articles and Academic Papers (빅데이터를 통해 본 한국사회의 미래: 언론사 뉴스기사와 사회과학 학술논문의 '미래사회' 관련 키워드 분석)

  • Kim, Mun-Cho;Lee, Wang-Won;Lee, Hye-Soo;Suh, Byung-Jo
    • Informatization Policy
    • /
    • v.25 no.4
    • /
    • pp.37-64
    • /
    • 2018
  • This study aims to forecast the future of the Korean society via a big data analysis. Based upon two sets of database - a collection of 46,000,000 news on 127 media in Naver Portal operated by Naver Corporation and a collection of 70,000 academic papers of social sciences registered in KCI (Korea Citation Index of National Research Foundation) between 2005-2017, 40 most frequently occurring keywords were selected. Next, their temporal variations were traced and compared in terms of number and pattern of frequencies. In addition, core issues of the future were identified through keyword network analysis. In the case of the media news database, such issues as economy, polity or technology turned out to be the top ranked ones. As to the academic paper database, however, top ranking issues are those of feeling, working or living. Referring to the system and life-world conceptual framework suggested by $J{\ddot{u}}rgen$ Habermas, public interest of the future inclines to the matter of 'system' while professional interest of the future leans to that of 'life-world.' Given the disparity of future interest, a 'mismatch paradigm' is proposed as an alternative to social forecasting, which can substitute the existing paradigms based on the ideas of deficiency or deprivation.

An Analysis of the Research Trends for Urban Study using Topic Modeling (토픽모델링을 이용한 도시 분야 연구동향 분석)

  • Jang, Sun-Young;Jung, Seunghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.661-670
    • /
    • 2021
  • Research trends can be usefully used to determine the importance of research topics by period, identify insufficient research fields, and discover new fields. In this study, research trends of urban spaces, where various problems are occurring due to population concentration and urbanization, were analyzed by topic modeling. The analysis target was the abstracts of papers listed in the Korea Citation Index (KCI) published between 2002 and 2019. Topic modeling is an algorithm-based text mining technique that can discover a certain pattern in the entire content, and it is easy to cluster. In this study, the frequency of keywords, trends by year, topic derivation, cluster by topic, and trend by topic type were analyzed. Research in urban regeneration is increasing continuously, and it was analyzed as a field where detailed topics could be expanded in the future. Furthermore, urban regeneration is now becoming a regular research field. On the other hand, topics related to development/growth and energy/environment have entered a stagnation period. This study is meaningful because the correlation and trends between keywords were analyzed using topic modeling targeting all domestic urban studies.

Analysis on Research Trends in Sport Facilities: Focusing on SCOPUS DB (스포츠시설에 관한 연구 동향 분석: SCOPUS DB를 중심으로)

  • Kim, Il-Gwang;Park, Seong-Taek;Park, Su-Sun;Kim, Mi-Suk;Park, Jong-Chul;Jiang, Jialei
    • Journal of Industrial Convergence
    • /
    • v.19 no.6
    • /
    • pp.11-19
    • /
    • 2021
  • The purpose of this study is to explore trends in research at home and abroad related to "Sport Facilities", and seek the direction of further research. 1,801 abstracts of papers including "Sport Facilities" were collected from the SCOPUS DB from 2016 to 2020. Topic modeling techniques based on Latent Dirichlet Allocation (LDA) algorithm implemented in R language, TD-IDF techniques, and word cluds using Tagxedo was conducted to analyze the data. As a result, 8 topics were optimally determined, and "sports", "facilities", "health", "physical", "data", and "using" were derived as the main keywords for topics. This results indicated that studies on physical activity, health and using facilities regarding sports facilities at home and abroad have been actively carried out in recent years. This indicates that papers in SCOPUS DB are paying attention to the instrumental value of sport facilities, such as health promotion and improving the quality of life. Therefore, various studies that help participants who use sport facilities for a healthy life should be continuously conducted in the future.

Digital Transformation: Using D.N.A.(Data, Network, AI) Keywords Generalized DMR Analysis (디지털 전환: D.N.A.(Data, Network, AI) 키워드를 활용한 토픽 모델링)

  • An, Sehwan;Ko, Kangwook;Kim, Youngmin
    • Knowledge Management Research
    • /
    • v.23 no.3
    • /
    • pp.129-152
    • /
    • 2022
  • As a key infrastructure for digital transformation, the spread of data, network, artificial intelligence (D.N.A.) fields and the emergence of promising industries are laying the groundwork for active digital innovation throughout the economy. In this study, by applying the text mining methodology, major topics were derived by using the abstract, publication year, and research field of the study corresponding to the SCIE, SSCI, and A&HCI indexes of the WoS database as input variables. First, main keywords were identified through TF and TF-IDF analysis based on word appearance frequency, and then topic modeling was performed using g-DMR. With the advantage of the topic model that can utilize various types of variables as meta information, it was possible to properly explore the meaning beyond simply deriving a topic. According to the analysis results, topics such as business intelligence, manufacturing production systems, service value creation, telemedicine, and digital education were identified as major research topics in digital transformation. To summarize the results of topic modeling, 1) research on business intelligence has been actively conducted in all areas after COVID-19, and 2) issues such as intelligent manufacturing solutions and metaverses have emerged in the manufacturing field. It has been confirmed that the topic of production systems is receiving attention once again. Finally, 3) Although the topic itself can be viewed separately in terms of technology and service, it was found that it is undesirable to interpret it separately because a number of studies comprehensively deal with various services applied by combining the relevant technologies.

Analysis of Research Trends in New Drug Development with Artificial Intelligence Using Text Mining (텍스트 마이닝을 이용한 인공지능 활용 신약 개발 연구 동향 분석)

  • Jae Woo Nam;Young Jun Kim
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.663-679
    • /
    • 2023
  • This review analyzes research trends related to new drug development using artificial intelligence from 2010 to 2022. This analysis organized the abstracts of 2,421 studies into a corpus, and words with high frequency and high connection centrality were extracted through preprocessing. The analysis revealed a similar word frequency trend between 2010 and 2019 to that between 2020 and 2022. In terms of the research method, many studies using machine learning were conducted from 2010 to 2020, and since 2021, research using deep learning has been increasing. Through these studies, we investigated the trends in research on artificial intelligence utilization by field and the strengths, problems, and challenges of related research. We found that since 2021, the application of artificial intelligence has been expanding, such as research using artificial intelligence for drug rearrangement, using computers to develop anticancer drugs, and applying artificial intelligence to clinical trials. This article briefly presents the prospects of new drug development research using artificial intelligence. If the reliability and safety of bio and medical data are ensured, and the development of the above artificial intelligence technology continues, it is judged that the direction of new drug development using artificial intelligence will proceed to personalized medicine and precision medicine, so we encourage efforts in that field.

A study on the classification of research topics based on COVID-19 academic research using Topic modeling (토픽모델링을 활용한 COVID-19 학술 연구 기반 연구 주제 분류에 관한 연구)

  • Yoo, So-yeon;Lim, Gyoo-gun
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.155-174
    • /
    • 2022
  • From January 2020 to October 2021, more than 500,000 academic studies related to COVID-19 (Coronavirus-2, a fatal respiratory syndrome) have been published. The rapid increase in the number of papers related to COVID-19 is putting time and technical constraints on healthcare professionals and policy makers to quickly find important research. Therefore, in this study, we propose a method of extracting useful information from text data of extensive literature using LDA and Word2vec algorithm. Papers related to keywords to be searched were extracted from papers related to COVID-19, and detailed topics were identified. The data used the CORD-19 data set on Kaggle, a free academic resource prepared by major research groups and the White House to respond to the COVID-19 pandemic, updated weekly. The research methods are divided into two main categories. First, 41,062 articles were collected through data filtering and pre-processing of the abstracts of 47,110 academic papers including full text. For this purpose, the number of publications related to COVID-19 by year was analyzed through exploratory data analysis using a Python program, and the top 10 journals under active research were identified. LDA and Word2vec algorithm were used to derive research topics related to COVID-19, and after analyzing related words, similarity was measured. Second, papers containing 'vaccine' and 'treatment' were extracted from among the topics derived from all papers, and a total of 4,555 papers related to 'vaccine' and 5,971 papers related to 'treatment' were extracted. did For each collected paper, detailed topics were analyzed using LDA and Word2vec algorithms, and a clustering method through PCA dimension reduction was applied to visualize groups of papers with similar themes using the t-SNE algorithm. A noteworthy point from the results of this study is that the topics that were not derived from the topics derived for all papers being researched in relation to COVID-19 (

    ) were the topic modeling results for each research topic (
    ) was found to be derived from For example, as a result of topic modeling for papers related to 'vaccine', a new topic titled Topic 05 'neutralizing antibodies' was extracted. A neutralizing antibody is an antibody that protects cells from infection when a virus enters the body, and is said to play an important role in the production of therapeutic agents and vaccine development. In addition, as a result of extracting topics from papers related to 'treatment', a new topic called Topic 05 'cytokine' was discovered. A cytokine storm is when the immune cells of our body do not defend against attacks, but attack normal cells. Hidden topics that could not be found for the entire thesis were classified according to keywords, and topic modeling was performed to find detailed topics. In this study, we proposed a method of extracting topics from a large amount of literature using the LDA algorithm and extracting similar words using the Skip-gram method that predicts the similar words as the central word among the Word2vec models. The combination of the LDA model and the Word2vec model tried to show better performance by identifying the relationship between the document and the LDA subject and the relationship between the Word2vec document. In addition, as a clustering method through PCA dimension reduction, a method for intuitively classifying documents by using the t-SNE technique to classify documents with similar themes and forming groups into a structured organization of documents was presented. In a situation where the efforts of many researchers to overcome COVID-19 cannot keep up with the rapid publication of academic papers related to COVID-19, it will reduce the precious time and effort of healthcare professionals and policy makers, and rapidly gain new insights. We hope to help you get It is also expected to be used as basic data for researchers to explore new research directions.

  • A Study on the Research Trends in Library & Information Science in Korea using Topic Modeling (토픽모델링을 활용한 국내 문헌정보학 연구동향 분석)

    • Park, Ja-Hyun;Song, Min
      • Journal of the Korean Society for information Management
      • /
      • v.30 no.1
      • /
      • pp.7-32
      • /
      • 2013
    • The goal of the present study is to identify the topic trend in the field of library and information science in Korea. To this end, we collected titles and s of the papers published in four major journals such as Journal of the Korean Society for information Management, Journal of the Korean Society for Library and Information Science, Journal of Korean Library and Information Science Society, and Journal of the Korean BIBLIA Society for library and Information Science during 1970 and 2012. After that, we applied the well-received topic modeling technique, Latent Dirichlet Allocation(LDA), to the collected data sets. The research findings of the study are as follows: 1) Comparison of the extracted topics by LDA with the subject headings of library and information science shows that there are several distinct sub-research domains strongly tied with the field. Those include library and society in the domain of "introduction to library and information science," professionalism, library and information policy in the domain of "library system," library evaluation in the domain of "library management," collection development and management, information service in the domain of "library service," services by library type, user training/information literacy, service evaluation, classification/cataloging/meta-data in the domain of "document organization," bibliometrics/digital libraries/user study/internet/expert system/information retrieval/information system in the domain of "information science," antique documents in the domain of "bibliography," books/publications in the domain of "publication," and archival study. The results indicate that among these sub-domains, information science and library services are two most focused domains. Second, we observe that there is the growing trend in the research topics such as service and evaluation by library type, internet, and meta-data, but the research topics such as book, classification, and cataloging reveal the declining trend. Third, analysis by journal show that in Journal of the Korean Society for information Management, information science related topics appear more frequently than library science related topics whereas library science related topics are more popular in the other three journals studied in this paper.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.