• Title/Summary/Keyword: 터널 환기

Search Result 304, Processing Time 0.021 seconds

A Numerical Analysis on the Effect of Parameters for the Flow Rate through the Tunnel with Jet Fan Ventilating System (제트 홴 방식 환기시스템을 사용하는 터널의 환기량에 영향을 주는 인자에 대한 수치해석 검토)

  • 김사량;김기정;허남건;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.7
    • /
    • pp.567-574
    • /
    • 2002
  • In the present study, ventilation flow rates and pressure rises through a road tunnel are simulated numerically using CFD with the various conditions such as roughness height, swirl angle of jet fan, entrance and exit effect and hub to tip ratio. By using a modified wall function, friction factor can be predicted under 10% of error with respect to the Moody chart for the circular pipe flow and 15%, for the present tunnel. For more precise design, the effects of the swirl angle and hub to tip ratio of jet fan, which is not included in the theoretical equation of pressure rise by jet fan are necessary to be considered.

Effect of the Ventilation Method on the Growth and Quality of Melon (Cucumis melo L.) in Greenhouse of Tunnel Type (터널형 하우스에서 환기방법이 참외의 생육 및 품질에 미치는 영향)

  • 신용습;연일권;도한우;서동환;배수곤;최성국;최부술
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.187-193
    • /
    • 1996
  • This experiment was conducted to investigate the influence of temperature variation by the different ventilation methods on the growth and quality of oriental melon in greenhouse of tunnel type 1. The dropping effect in temperature by ventilation types was best at type 3 and those of type 2, type 1 were in order. 2. The temperature distribution in type 3 was uniformed as air- inflow and air- outflow by wind ventilation were easier than others. Whereas the temperature of type 1 having lateral ventilation hole and type 2 having the zenith ventilation tube and lateral ventilation hole was ascended, because small ventilation area of ventilation tube and hole could not make the gravity and wind ventilation successfully. 3. When compared with air amount of three types ventilated by the temperature difference of outside and inside of tunnel type house, that of type 3 was more than those of type 1 and type 2. 4. Type 3 was better than type 2 and type 1 in lear numbers, leaf area, fruit weight, flesh thickness, malformed fruit rate, and marketable fruit rate. 5. Marketable fruit rate of all treatment at each harvesting stages was rised, as goes to the latter periods.

  • PDF

Numerical study for smoke behavior in case of train fires in railway tunnel with axial fan vents (강제환기 통풍구가 설치된 철도터널 열차화재에서 연기거동에 관한 수치해석적 연구)

  • Kim, Dong-Hyeon;Shin, Min-Ho;Moon, Jung-Joo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1998-2004
    • /
    • 2003
  • Numerical study were performed to analyze for fire safety in railway tunnel with forced ventilation vents. For the condition of train fires with heat release rate of 30 MW, unsteady three dimensional analysis were carried out to investigate the effects of smoke movements, the heat transfer and $CO_2$ concentrations and in double track tunnel with two vents. Among three operation modes of forced ventilations at two vents, the exhaust-exhaust mode of the vent represents the best performance for the evacuation of passengers to avoid the fire.

  • PDF

Fire Simulation Study and Tunnel Ventilation of Requirement in the Longitudinal Tunnel. (In Yimgo-4th Tunnel) (종류식 터널내 소요 환기량에 의한 터널환기 및 화재 시뮬레이션 연구 ( 임고 4 터널 ))

  • Chae, Kyung-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1378-1385
    • /
    • 2008
  • This study is aimed to analyze the flow patterns and thermal characteristics by computer simulation under the variations of fire strength for Daegu-Pahang Yimgo-4th tunnel, from which flow and heat distributions are predicted in the longitudinal tunnel. Though the results of numerical computations, followings are found; one is that the volume flow rate is discontinuously increasing as closer to fire location, and the other is that a critical design to get faster flow rate is required because of existence of backlayer flow for the high fire strength in view of safety for the people in fire of the tunnel.

  • PDF

Effects of the Distance between Jet Fans on the Ventilation Performance in a Road Tunnel (제트홴의 이격거리에 따른 터널내 환기특성에 관한 수치적 연구)

  • Kim, Jung-Yup
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.4
    • /
    • pp.25-30
    • /
    • 2011
  • The jet fan is generally used to add thrust in the longitudinal ventilation system of road tunnel and the geometric conditions of jet fan such as the distance from tunnel wall have an effect on the performance of ventilation system. Numerical analyses on the flow in tunnel caused by operation of jet fan are presented to study the ventilation characteristics in tunnel. While the distance between jet fans in parallel installed in tunnel is changed 0.5 L/D to 3.0 L/D, the flowrate and mean velocity through tunnel are calculated for each cases. As the distance between jet fans increases, the flowrate through tunnel increases asymptotically and the momentum of tunnel flow is alike.

The thermal environment and the validity of ventilation in subway system (지하철 시스템의 온도 환경 및 환기 성능 분석)

  • Son, Sung-Chul;Kim, Jin
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.28 no.6
    • /
    • pp.443-451
    • /
    • 1999
  • 지하철은 일반 도로터널과는 달리 환기시스템 설계를 할 때 가장 중요한 부분은 온도에 관한 문제이며 이러한 온도환경문제의 가장 중요한 변수는 지하내부에서 발생하는 온도와 외부의 온도의 융합의 매개체인 피스톤효과와 송풍기이다.

  • PDF

A Study on the Prediction of HLW Temperature from Natural Ventilation Quantity using CFD (전산유체학을 이용한 고준위 방사성 폐기물 처분장의 자연환기량에 의한 온도예측)

  • Roh, Jang-Hoon;Yu, Yeong-Seok;Jang, Seung-Hyun;Park, Seon-Oh;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.22 no.6
    • /
    • pp.429-437
    • /
    • 2012
  • This study predicted temperature in the disposal tunnels using computational fluid dynamics based on natural ventilation quantity that comes from high altitude and temperature differences that are the characteristics of high level waste repository. The result of the previous study that evaluated quantitatively natural ventilation quantity using a hydrostatic method and CFD shows that significant natural ventilation quantity is generated. From the result, this study performed the prediction of temperature in disposal tunnels by natural ventilation quantity by the caloric values of the wastes, at both deep geological repository and surface repository. The result of analysis shows that deep geological repository is effective for thermal control in the disposal tunnels due to heat transfer to rock and the generation of sufficient natural ventilation quantity, while surface repository was detrimental to thermal control, because surface repository was strongly affected by external temperature, and could not generate sufficient natural ventilation quantity. Moreover, this study found that in the case of deep geological repository with a depth of 200 m, the heatof about $10^{\circ}C$ was transferred to the depth of 500 m. Thus, it is considered that if the high level waste repository scheduled to be built in the country is designed placing an emphasis on thermal control, deep geological repository rather than surface repository is more appropriate.

The effect of a risk factor on quantitative risk assessment in railway tunnel (철도터널에서 위험인자가 정량적 위험도 평가에 미치는 영향)

  • Yoo, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho;Shin, Hyun-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.2
    • /
    • pp.117-125
    • /
    • 2015
  • Quantitative risk assessment (QRA) of railway is to create a variety of scenario and to quantify the degree of risk by a result of the product of accident frequency and accident. Quantitative risk Assessment is affected by various factors such as tunnel specifications, characteristics of the fire, and relation of smoke control and evacuation direction. So in this study, it is conducted that how the way of smoke control and the relation of smoke control and evacuation direction affect quantitative risk assessment with variables (the tunnel length (2, 3, 4, 5, 6 km) and the slope (5, 15, 25‰)). As the result, in a train fire at the double track tunnel (Area = $97m^2$), it is most efficient to evacuate to the opposite direction of smoke control regardless of the location of train in train fire. In addition, under the same condition, index risk in mechanical ventilation up to 1/10.

A numerical study of the effects of the ventilation velocity on the thermal characteristics in underground utility tunnel (지하공동구 터널내 풍속 변화에 따른 열특성에 관한 수치 해석적 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Ra, Kwang-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.1
    • /
    • pp.29-39
    • /
    • 2017
  • In this research, thermal design data such as heat transfer coefficient on the wall surface required for ventilation system design which is to prevent the temperature rise in the underground utility tunnel that three sides are adjoined with the ground was investigated in numerical analalysis. The numerical model has been devised including the tunnel lining of the underground utility tunnel in order to take account for the heat transfer in the tunnel walls. The air temperature in the tunnel, wall temperature, and the heating value through the wall based on heating value(117~468 kW/km) of the power cable installed in the tunnel and the wind speed in the tunnel(0.5~4.0 m/s) were calculated by CFD simulation. In addition, the wall heat transfer coefficient was computed from the results analysis, and the limit distance used to keep the air temperature in the tunnel stable was examined through the research. The convective heat transfer coefficient at the wall surface shows unstable pattern at the inlet area. However, it converges to a constant value beyond approximately 100 meter. The tunnel wall heat transfer coefficient is $3.1{\sim}9.16W/m^2^{\circ}C$ depending on the wind speed, and following is the dimensionless number:$Nu=1.081Re^{0.4927}({\mu}/{\mu}_w)^{0.14}$. This study has suggested the prediction model of temperature in the tunnel based on the thermal resistance analysis technique, and it is appraised that deviation can be used in the range of 3% estimation.

A study on the operation characteristics of oversized exhaust port applicable to double-deck tunnel (복층터널에 적용 가능한 화재 연동형 대배기구 운영 특성 분석 연구)

  • Park, Jinouk;Yoo, Yongho;Kim, Yangkyun;Park, Byoungjik;Kim, Whiseong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.887-895
    • /
    • 2019
  • Recently, the number of underground road development projects has been increasing to solve traffic problems in the national capital region and metropolitan areas with intensified overcrowding, and there has been a tendency to plan underground roads by applying a double-deck tunnel technology that has advantages in constructability and economical efficiency. The double-deck tunnel has a structure where one excavation section is divided into two parts and used as up and down lines, and is mainly used as a road for small vehicles only due to its low floor height. In addition, due to the small cross-sectional area, it has characteristics different from those of general road tunnels in terms of ventilation and disaster prevention. In this regard, this study proposed an operational plan that applies an oversized exhaust system, which is one of semi-transverse ventilation systems, to small cross-sectional tunnels like double-deck tunnel with low floor height, and a comparative analysis between smoke exhaust characteristics according to the fire occurrence locations and oversized exhaust systems was conducted using the Fire Dynamics Simulator (FDS). The results showed that unlike uniform exhaust, intensive smoke exhaust using the oversized exhaust port maximized the delay effect of smoke diffusion and limited the smoke within 50 m above and below the fire point.