• Title/Summary/Keyword: 터널 개구부

Search Result 8, Processing Time 0.027 seconds

A study on the clogging of shield TBM cutterhead opening area according to the characteristics of cohesive soil content (점성토 함량 특성에 따른 shield TBM cutterhead 개구부의 폐색현상에 관한 연구)

  • Bang, Gyu-Min;Kim, Yeon-Deok;Hwang, Beoung-Hyeon;Cho, Sung-Woo;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.4
    • /
    • pp.265-280
    • /
    • 2021
  • Population density due to urbanization is making people interested in underground space development and much interest in TBM construction with low vibration and noise. This led to a lot of research on TBM. However, research on the characteristics of the cutterhead opening of the TBM equipment being occluded under the ground conditions under which it is excavated is insufficient. Accordingly, a study was conducted to investigate clogging of the cutterhead opening during the shield TBM rolling. To identify the clogging of cutterhead openings in SHIELD TBM equipment, the reduced model experiment was divided into clay rate (10%, 30%, 50%, 60%), cutterhead opening rate (30%, 50%, 60%), and cutterhead rotation direction (one-way, two-way) and rotational speed (3 RPM) and conducted in 36 cases. Results of scale model test on shield TBM clogging, it was analyzed that the ground condition containing clay soil increased the clogging effect in both directions than the unidirectional rotation, and that the lower the rotational speed of the cutterhead, the less the clogging effect. Accordingly, the direction of cutterhead rotation, rotational speed and opening rate are calculated by taking into account ground conditions during ground excavation, the clogging effect can be reduced. It is believed to be effective in saving air as the clogging effect is reduced. Therefore, this study is expected to be an important material for domestic use of shield TBM.

A Study on the Excavation of the Center Wall for the Evacuation Passageway in the Operating 2-Arch Tunnel (운행 중인 2-Arch 터널의 피난연결통로 신설을 위한 중앙벽체 굴착에 관한 연구)

  • Lee, Jong-Hyun
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.454-464
    • /
    • 2021
  • Purpose: There is a need to construct an evacuation passageway for the 2-Arch tunnel, which has been constructed and is in operation. Therefore, it aims to analyze tunnel and center wall behaviour and stability due to excavation of the center wall. Method: We describe the theoretical background of 2-Arch tunnel and evacuation passageway, and focused on analyzing the behaviour of tunnel and wall using 3-dimensional finite element analysis. Parametric analysis according to rock rating was performed with various ground conditions, and the displacement and stress of the center wall were intensively analyzed. Result: With the center wall excavation, the largest amount of settlement was shown in the center of the opening, and the stress was greatest during the first excavation. In addition, it was shown that stress concentration occurred at the top of both openings, and stability reviews considering the concept of allowable stress showed that it exceeded the allowable stress. Conclusion: Although the displacement of the tunnel has secured stability within the allowable standard, the generated stress is found to exceed the allowable standard, so it is necessary to prevent sudden stress release by applying appropriate reinforcement methods during construction.

A Development of New Device for Bow Thruster Tunnel Grids (바우 스러스터 터널 그리드 개선을 위한 연구)

  • Kim, Sung-Pyo;Park, Jae-Jun;Jun, Dong-Su;Kim, Yong-Soo;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.43 no.3 s.147
    • /
    • pp.304-312
    • /
    • 2006
  • For protection of the thruster against mechanical damage and reduction of tunnel resistance at ship forward speed, the tunnel grids are normally installed. Some of ship operators however, have a strong distrust of the protective function of the tunnel grids and so they do not want to install the protective grids for higher thruster efficiency. Since the grids should be installed at very close to the side shell as far as possible in due consideration of flow direction to minimize additional resistance induced by tunnel openings, it has been too hard and time consuming work to install the grids on the curved and chamfered tunnel entrances considering its relatively low resistance reduction effect. DSME (Daewoo Shipbuilding & Marine Engineering Co., Ltd) developed a substituting device named TG (Tunnel Guides) for bow thruster tunnel grids which is characterized by higher resistance reduction, higher thruster efficiency and easy to installation. This paper provides the principle idea of the TG with short history of the development using CFD calculations and model experiments in MOERI (former KRISO).

Comparison of the GPR response of the cavity behind the tunnel lining before and after the backfill grouting (터널 콘크리트 라이닝 배면공동 뒷채움 전후의 GPR 반응)

  • Moon, Yoon-Sup;Ha, Hee-Sang;Ko, Kwang-Beom
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.191-194
    • /
    • 2008
  • The cavity behind the tunnel lining, caused by overbrake, might be cause a severe instability during tunnel construction. So backfill grouting is essentially required. GPR(Ground penetrating Radar) is widely used to identify the position and size of the cavity and to verify the effect of the backfill grouting. In this study, GPR survey with 450 MHz antenna was implied to access the effect of the backfill grouting before and after the work to the crown part of ○○ tunnel in Seoul respectively. The result of GPR survey conducted before the backfill, was revealed that cavities behind the lining were existed in the areas of 8 spans. Finally, from the GPR survey implied after backfilling, it was turned out that backfill grouting was successfully carried out. Also, GPR survey was ascertained the better contact between lining and rock base at arrangement of bar span.

  • PDF

DEM numerical study for the effect of scraper direction on shield TBM excavation in soil (개별요소법을 이용한 스크래퍼 비트방향이 토사지반에서의 쉴드 TBM 굴진에 끼치는 영향 연구)

  • Lee, Gi-Jun;Kim, Huntae;Kwon, Tae-Hyuk;Cho, Gye-Chun;Kang, Shin-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.689-698
    • /
    • 2019
  • In tunnel excavation by TBMs, a cutterhead, which practically excavates the ground, is an important part directly affecting net penetration rate. Most of the researches on the cutterhead design that have been carried out until now are on the cutter arrangement. It is difficult to find a study for the effect of the scraper installation direction on TBM excavation although same cutterheads except for direction of the scraper are used in Korea. Therefore, this paper shows how the direction of scraper installation affects shield-TBM excavation. Discrete element method was used to identify the effect of scraper installation direction on shield-TBM excavation. When the scraper installation direction was outward, the amount of particles per unit time flowed into the cutter head opening was smaller than when the scraper installation direction was inward, and more loads were applied to the cutterhead.

Health Risk Factors and Ventilation Improvements in Welding Operation at Large-sized Casting Process (대형 주물공정 용접작업장의 건강 위해인자 및 환기 개선)

  • Jung, Jong Hyeon;Jung, Yu Jin;Lee, Sang Man;Lee, Jung Hee;Shon, Byung Hyun;Lim, Hyun Sul
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.171-178
    • /
    • 2014
  • In this study we have examined the health risk factors and analyzing data of laborers working at the welding operation at large-sized casting process. In order to improve the working environment of workplace, an effective ventilation method was proposed after performing CFD (computational fluid dynamics) modeling and measurement of pollutants. As a result of examining the health risk factors of workers, oxidized steel dust is the main pollution source in the company A, welding fume in the companies B and C, and welding fume and oxidized steel dust in the company D. The fume concentration in the workers' breathing zone was $0.05{\sim}4.37mg/m^3$, and the fume concentration in the indoor air at the welding process was $0.13{\sim}7.54mg/m^3$. From a result of CFD, a local exhaust with an exhaust duct adjacent to welding point was found to be most effective in case of the exhaust process. In case of air supply, we found that a desired location of air supply fan would be at the end of the opening. If a standardizing the ventilation system for tunnel-type semi-enclosed space at a large-sized casting process is introduced in welding work places in the future, it would be more effective to protect the health of welding workers working at the casting industry and shipbuilding industry and improve the work environment.

Study on the Crack Generation Patterns with Change in the Geometry of Notches and Charge Conditions (노치 형상 및 장약조건의 변화에 따른 균열발생양상에 관한 연구)

  • Park, Seung-Hwan;Cho, Sang-Ho;Kim, Seung-Kon;Kim, Kwang-Yeom;Kim, Dong-Gyou
    • Tunnel and Underground Space
    • /
    • v.20 no.1
    • /
    • pp.65-72
    • /
    • 2010
  • Crack-controlled blasting method which utilizes notched charge hole has been proposed in order to achieve smooth fracture plane and minimize the excavation damage zone. In this study, the blast models, which have a notched charge hole, were analyzed using dynamic fracture process analysis software to investigate the effect of the geometry of a notched charge hole and decoupling indexes of the charge hole on crack growth control in blasting. As a result, crack extension increased and damage crack decreased with the notch length. Ultimately, stress increment factors and resultant fracture patterns with different notch length and width were analyzed in order to examine the effect factors on the crack growth controlling in rock blasts using a notched charge hole.

A Study on Monitoring Surface Displacement Using SAR Data from Satellite to Aid Underground Construction in Urban Areas (위성 SAR 자료를 활용한 도심지 지하 교통 인프라 건설에 따른 지표 변위 모니터링 적용성 연구)

  • Woo-Seok Kim;Sung-Pil Hwang;Wan-Kyu Yoo;Norikazu Shimizu;Chang-Yong Kim
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.39-49
    • /
    • 2024
  • The construction of underground infrastructure is garnering growing increasing research attention owing to population concentration and infrastructure overcrowding in urban areas. An important associated task is establishing a monitoring system to evaluate stability during infrastructure construction and operation, which relies on developing techniques for ground investigation that can evaluate ground stability, verify design validity, predict risk, facilitate safe operation management, and reduce construction costs. The method proposed here uses satellite imaging in a cost-effective and accurate ground investigation technique that can be applied over a wide area during the construction and operation of infrastructure. In this study, analysis was performed using Synthetic Aperture Radar (SAR) data with the time-series radar interferometric technique to observe surface displacement during the construction of urban underground roads. As a result, it was confirmed that continuous surface displacement was occurring at some locations. In the future, comparing and analyzing on-site measurement data with the points of interest would aid in confirming whether displacement occurs due to tunnel excavation and assist in estimating the extent of excavation impact zones.