• Title/Summary/Keyword: 터널설계변수

Search Result 137, Processing Time 0.025 seconds

Effects of Input Parameters in Numerical Modelling of Dynamic Ground Motion under Blasting Impact (발파하중을 받는 지반의 동적 거동 수치 모델링에서 입력변수의 영향)

  • Ryu, Chang-Ha;Choi, Byung-Hee;Jang, Hyung-Su;Kang, Myoung-Soo
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.255-263
    • /
    • 2015
  • Explosive blasting is a very useful tool for mining and civil engineering applications. It, however, may cause severe environmental hazards on adjacent structures due to blasting impact. Blast engineers try to make optimum blast design to provide efficient performance and to minimize the environmental impact as well. It requires a pre-assessment of the impacts resulting from the blasting operation in design stage. One of the common procedures is to evaluate the proposed blast pattern through a series of test blasting in the field. Another approach is to evaluate the possible environmental effects using the numerical methods. There are a number of input parameters to be prepared for the numerical analysis. Some of them are well understood, while some are not. This paper presents some results of sensitivity analysis of the basic input parameters in numerical modelling of blasting problems so as to provide sound understanding of the parameters and some guidelines for input preparation.

A Study on the Traffic Accident Characteristics Analysis in Expressway Longitudinal Tunnel using a Logit Model (로짓모형을 이용한 고속도로 장대터널 교통사고 특성분석에 관한 연구)

  • Seo, Im-Ki;Park, Je-Jin;AhnNam, Byung-Ho;Lee, Jun-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.549-556
    • /
    • 2012
  • Longitudinal tunnels are defined as tunnels with length of over 1km. Because of Korea's topographical conditions and as safety measures for linear design, many tunnels are inevitably being constructed in Korea. The number of longitudinal tunnels constructed on expressways amounted to 104 as of the end of 2010 with a total length of 192km. Given the increasing demand for tunnels and the increasing length of tunnels, a safety evaluation of longitudinal tunnels needs to be conducted. As such, this study selected design elements, transportation environment and delineation system as elements to check and tried to determine factors influencing road crashes. For this, tunnels have been classified based on history of crashes; ones with crashes and ones without crashes and statistically meaningful explanatory variables were selected. By using these variables, a logit model was development in order to better grasp the factors that directly and strongly influence crashes. The result, related to crashes as well as the analysis were utility tunnel interior materials of driving lane and passing lane, which are related to driver's visibility, lateral width widening to consolidate space in a tunnel, and annual average daily traffic (AADT) per lane. These results may be used in the future as analysis indicators when drawing up plans to prevent crashes in longitudinal tunnels.

Investigation on the Behavior of Tunnel Face Reinforced with Longitudinal Reinforcements using Reduced-Scale Model Tests (모형실험에 의한 수평보강재로 보강된 터널 막장의 거동 분석)

  • Yoo, Chung-sik;Shin, Hyun-Kang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.32-40
    • /
    • 2000
  • This paper presents the results of a parametric study on the behavior of tunnel face reinforced with horizontal pipes. A series of reduced-scale model tests was carried out to in an attempt to verify previously performed three-dimensional numerical modeling and to investigate effects of reinforcement layout on the tunnel face deformation behavior. The results of model tests indicate that the tunnel face deformation can significantly reduced by pre-reinforcing the tunnel face with longitudinal members and thus enhancing the tunnel stability. In addition, the model tests results compare fairly well with those from the previously performed three-dimensional finite element analysis. Therefore, a properly calibrated three dimensional model may effectively be used in the study of tunnel face reinforcing technique.

  • PDF

Reliability analysis for design of shield tunnel segment lining under earthquake load (쉴드 터널 세그먼트 라이닝의 내진설계를 위한 신뢰성해석)

  • Park, Young-Bin;Kim, Do;Byun, Yosep;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.249-259
    • /
    • 2020
  • Design criteria for limit state design of underground structures have already been published overseas, and research has been conducted to revise the design method in Korea. In order to estimate the probability of failure under seismic load, the probability variable should be considered in the reliability analysis. In this study, the failure probability of the existing shield tunnel segment lining design was calculated by applying the coefficient of variation (COV) for the earth pressure and the seismic load effect in consideration of the statistical characteristics of the domestic ground properties. Based on the results of calculating the reliability index (β) from the calculated probability of failure and analyzing the reliability index according to the change in the load factor and the results of domestic and foreign research, the target reliability index (βT) during earthquakes of shield tunnel segment lining is analyzed to be "2.3", it was proposed as the target reliability index for the design of the limit state under seismic load.

Design considerations and field applications on inflatable structure system to protect rapidly flooding damages in tunnel (해저터널 급속차폐를 위한 팽창구조체의 설계 및 현장적용에 대한 연구)

  • Kim, Hyeob;Kang, Si-On;Yoo, Kwang-San;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.161-177
    • /
    • 2017
  • This paper presents the design considerations and field applications on inflatable structure system to protect rapidly flooding damages in large section tunnel. This inflatable structure system is very valuably used to protect passively and rapidly the possibilities of tunnel damages by flooding threats and unusual leakage to be occurred during and after underground infrastructure. In particular, this system should be necessary in subsea tunnel. The predominant factors in the design of inflatable structure system are the leakage and friction characteristics between the inflater and tunnel liner. The analytical and experimental studies are performed to develop the design considerations and to examine the design parameters of the inflatable structure system. The analytical solutions are developed using membrane theory to suggest the design considerations. The relative friction tests of several fabric materials are also carried out to determine the friction characteristics according to the different friction conditions between inflater and tunnel surface. The test results show that the friction coefficients in wet surface condition are about 20% lower than the values in dry surface condition. In addition, virtual design of tunnel protection system for two virtual subsea tunnel sites which is under reviewing in Korea, is carried out based on this research. It is expected that the results of this research will be very useful to understand the inflater structure design and development the technology of tunnel protection structures in the future.

A study on the correlation of the structural integrity's reduction factors using parametric analysis (매개변수 해석을 이용한 구조물 건전도 저감 영향인자 상관성 연구)

  • La, You-Sung;Park, Min-Soo;Koh, Sungyil;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.485-502
    • /
    • 2021
  • In order to evaluate the impact of ground subsidence and superstructures that are inevitably caused by tunnel excavation, a total of seven major influencing factors of surface subsidence and structural soundness reduction were set, and a Parameter Study using numerical analysis was conducted. Stability analysis was performed using scheme of Boscardin and Cording method and the maximum subsidence amount and the angular displacement, and correlation analysis was performed for each major influencing factor. In addition, it was applied that used the mutual behavior of the ground and the structure by parameter analysis in the site of the 𐩒𐩒𐩒 tunnel located in Hwaseong-si, Gyeonggi-do, and the applicability of the site was analyzed. As a result, the error was found to be 1.0%, and it could be used as a basic material for determining the appropriate tunnel route under various conditions when evaluating the stability of the structure according to tunnel excavating at the design stage.

Groundwater flow Analysis Using MODFLOW in the Tunnel (MODFLOW를 이용한 터널의 지하수 유동해석)

  • Hue, Chang-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.1
    • /
    • pp.129-142
    • /
    • 2003
  • In this study, the conduct of underground water flow system with 3 dimensions is interpreted in order to examine closely the actual condition regarding the flow of the underground water which is forecast from the tunnel segment and the interpretation result which selects the design and the construction technique of the tunnel segment was applied. Also, an obstacle to construct that relates with the underground water flow in construction duration in advance will be able to apply with information that is necessary in order to establish the countermeasure. The objective tunnel is the BEOPGI tunnel segment that is 2 parallel tunnels that are a one-way 2 lane and the parameters of the MODFLOW model executing the boring investigation and the permeability examination were presumed. The underground water flow of the excavation tunnel inside was interpreted by the MODFLOW model using the parameters which is presumed and two values which compared with calculated value and observed value are the same almost. Also, when the underground water discharge quantify that followed in tunnel excavation tries to compare, the underground water total discharge quantity from tunnel point of start until destination was presumed as 0.0269㎥/day/$m^2$.

Estimation of design parameters of TBM using punch penetration and Cerchar abrasiveness test (압입시험 및 세르샤 마모시험에 의한 TBM의 설계변수 추정)

  • Jeong, Ho-Young;Lee, Sudeuk;Jeon, Seokwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.237-248
    • /
    • 2014
  • Linear cutting test is known to be very effective to determine machine parameters (i.e. thrust force and torque) and to estimate penetration rate of TBM and other operation conditions. Although the linear cutting test has significant advantages, the test is expensive and time-consuming because it requires large size specimen and high load capacity of the testing machine. Therefore, a few empirical prediction models (e.g. CSM, NTNU and QTBM) alternatively adopt laboratory index tests to estimate design parameters of TBM. This study discusses the estimation method of TBM machine parameters and disc cutter consumption using punch penetration test and Cerchar abrasion test of which the researches are rare. The cutter forces and cutter consumption can be estimated by the empirical models derived from the relationship between laboratory test result with field data and linear cutting test data. In addition, the estimation process was programmed through which the design parameters of TBM (e.g. thrust, torque, penetration rate, and cutter consumption) are automatically estimated using laboratory test results.

An Assessment of Rock Pillar Behavior in Very Near Parallel Tunnel (초근접 병설터널의 암반 필라 거동 평가)

  • Kim, Won-Beom;Yang, Hyung-Sik;Ha, Tae-Wook
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.60-68
    • /
    • 2012
  • Focusing on the load tunnel, this study assessed the behavior of rock pillars with less than 0.5D of the minimized distance between the two horizontal tunnels by using a three dimensional numerical analysis. Based on a parameter affecting the behavior of rock pillars, this study evaluated different safety factors according to pillar width, depth and rock conditions. It turned out that as the pillar width increases, the current curve of safety factors in accordance with depth and rock conditions shows more of the nonlinear behavior. Judging from the minimum safety factor, the study suggested a design chart, working on the minimized distance between the two horizontal tunnels.

IPSec based Network Design for the Mobile and Secure Military Communications (이동성과 보안성 만족 군용 통신을 위한 IPSec 기반 네트워크 설계)

  • Jung, Youn-Chan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1342-1349
    • /
    • 2010
  • Full-mesh IPSec tunnels, which constitute a black network, are required so that the dynamically changing PT (Plain Text) networks can be reachable across the black network in military environments. In the secure and mobile black networks, dynamically re-configuring IPSec tunnels and security policy database (SPD) is very difficult to manage. In this paper, for the purpose of solving mobility and security issues in military networks, we suggest the relating main technologies in association with DMIDP (Dynamic Multicast-based IPSec Discovery Protocol) based on existing IPSec ESP (Encapsulating Security Payload) tunnels and IPSec key managements. We investigate the main parameters of the proposed DMIDP techniques and their operational schemes which have effects on mobility and analyze operational effectivemess of the DMIDP with proposed parameters.