• Title/Summary/Keyword: 태양일사량

Search Result 398, Processing Time 0.027 seconds

Analysis of Irradiation and Power per Each Months of Photovoltaic Systems (태양광 발전시스템의 월별 일사량과 전력량 분석)

  • Shin, Hyun-Mahn;Choi, Yong-Sung;Hwang, Jong-Sun;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.40-42
    • /
    • 2009
  • The economic growth and highly industrialized society have increased the demand for electricity power. As a result, concerns were focused on the energy resource scarcity and global warming. That is why the photovoltaic generation system to address these concerns has been in the spotlight recently. In this thesis, a utility interactive photovoltaic generation system was operated experimentally for the purpose of promoting the spread of the photovoltaic generation system in the future. Also, the effect of the type of array structure has on the performance of the photovoltaic generation system was evaluated quantitatively and by analyzing the comprehensive operating characteristics, the following results were obtained. In the demo system operated for a year, the average irradiation was measured to be 455,076 $[W/m^2]$ and the maximum irradiation to be 626,622 $[W/m^2]$ in May, up 171,546 $[W/m^2]$ or 38[%] compared with the average irradiation. The minimum irradiation was observed to be 294,022$[W/m^2]$ in December, down 161,054 $[W/m^2]$ or 35[%] compared with the average irradiation. The generation power in situation where there is plenty of irradiation was more than the average one, and the generation power in the fixed system amounted to 32[%], the single-axis tracker to 37[%], and the dual-axis tracker to 39[%]. The generation power in situation where there is little irradiation was less than the average one, and the generation power in the dual-axis tracker amounted to 41[%], the single-axis tracker to 40[%], and the fixed system to 36[%].

  • PDF

Analysis of Irradiation and Power per Each Seasons of Photovoltaic Systems (태양광 발전시스템의 계절별 일사량과 전력량 분석)

  • Kim, Seok-Gon;Hwang, Jun-Won;Lee, Ying;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.43-45
    • /
    • 2009
  • In case of favourable irradiation conditions, the ratio of irradiation to the total irradiation went up and then the irradiation increased in the area with high angle of inclination. The study showed that on a clear day with the irradiation of more than 80$[W/m^2]$, the pattern of alternating current power change in the fixed system was similar with that in the single-axis tracker. On the contrary, in case of unfavourable irradiation conditions, the ratio of diffuse irradiation to the total irradiation went up and then the horizontal irradiation increased. In the demo system, the fixed system, the single-axis tracker and the dual-axis tracker all had low generation power and similar generation pattern with each other. The study showed the generation power varied with the irradiation in the fixed system, while in the single-axis tracker and the dual-axis tracker, the amount of the generation Power variation was much more than the irradiation variation. The demo system was operated from 11:00 AM to 2:00 PM for generating power, during which time, 46[%] to 56[%] of the total generation power was produced. In this study, the generation power was increased by 147[%] in the fixed system, by 136[%] in the single-axis tracker, and by 164[%] in the dual-axis tracker, and the pattern of generation power was similar with the generation power variation in the situation where the irradiation increased by 140[%] in the spring with plenty of insolation. The alternating current power was more sensitive to variation of the irradiation than to that of the surface temperature of a module. The variation of the irradiation had a more positive effect on the generation power than the type of array.

  • PDF

Analysis of Hydrodynamics in a Directly-Irradiated Fluidized Bed Solar Receiver Using CPFD Simulation (CPFD를 이용한 태양열 유동층 흡열기의 수력학적 특성 해석)

  • Kim, Suyoung;Won, Geunhye;Lee, Min Ji;Kim, Sung Won
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.535-543
    • /
    • 2022
  • A CPFD (Computational particle fluid dynamics) model of solar fluidized bed receiver of silicon carbide (SiC: average dp=123 ㎛) particles was established, and the model was verified by comparing the simulation and experimental results to analyze the effect of particle behavior on the performance of the receiver. The relationship between the heat-absorbing performance and the particles behavior in the receiver was analyzed by simulating their behavior near bed surface, which is difficult to access experimentally. The CPFD simulation results showed good agreement with the experimental values on the solids holdup and its standard deviation under experimental condition in bed and freeboard regions. The local solid holdups near the bed surface, where particles primarily absorb solar heat energy and transfer it to the inside of the bed, showed a non-uniform distribution with a relatively low value at the center related with the bubble behavior in the bed. The local solid holdup increased the axial and radial non-uniformity in the freeboard region with the gas velocity, which explains well that the increase in the RSD (Relative standard deviation) of pressure drop across the freeboard region is responsible for the loss of solar energy reflected by the entrained particles in the particle receiver. The simulation results of local gas and particle velocities with gas velocity confirmed that the local particle behavior in the fluidized bed are closely related to the bubble behavior characterized by the properties of the Geldart B particles. The temperature difference of the fluidizing gas passing through the receiver per irradiance (∆T/IDNI) was highly correlated with the RSD of the pressure drop across the bed surface and the freeboard regions. The CPFD simulation results can be used to improve the performance of the particle receiver through local particle behavior analysis.

Application Performances of the Simplified Solar Collectors and for the Drying of Red Pepper (간이(簡易) 태양열(太陽熱) 집열기(集熱器)의 유형별(類型別) 분석(分析) 및 고추건조(乾燥)에의 이용(利用))

  • Choi, Boo-Dol;Chun, Jae-Kun
    • Korean Journal of Food Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.479-484
    • /
    • 1986
  • Two different types of solar collector for farm dryer- the flatplate type and the modified tubular type-were constructed and analyzed on their performances. The transparent plastic film, black painted galvanized iron sheet and black vinyl film were used for the cover and absorber of the flat-plate types. The simplified tubular type was constructed with transparent films for the cover and black vinyl films for the absorber Two elliptical iron rings were used to form a tubular shape through which air could pass. No remarkable differences were found in thermal efficiences between the absorbers made with galvanized iron sheet and black vinyl film. The average thermal efficiencies of the solar collectors were 42.8%(max.48.2%, min.38.2%) for flat plate type and 22.971 (max. 25.4%, min. 14.8%)) for tubular one. The empirical equations were proved to be applicable to the prediction of temperature elevation. The tubular solar heat collector was successfully applied to red peppers drying as a practical farm dryer. The drying rate was almost doubled compared to a conventional sun drying.

  • PDF

Feed System Modeling of Railroad using Fuel Cell Power Generation System (연료전지 발전시스템을 이용한 철도급전계통 모델링)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.195-200
    • /
    • 2020
  • With the growing interest in fossil fuel depletion and environmental pollution, railroad cars operating in Korea are in progress as the conversion from diesel to electric vehicles expands. The photovoltaic system, which is applied as an example of the conversion of electric vehicles, is infinite and pollution-free, and can produce energy without generating hazards such as air pollution, noise, heat, and vibration, and maintain fuel transportation and power generation facilities. There is an advantage that is rarely needed. However, the amount of electricity produced depends on the amount of solar radiation by region, and the energy density is low due to the power generation of about 25㎡/ kWp, so a large installation area is required and the installation place has limited problems. In view of these problems, many studies have been applied to fuel cells in the railway field. In particular, the plan to link the fuel cell power generation system railroad power supply system must be linked to the power supply system that supplies power to the railroad, unlike solar and wind power. Therefore, it has a close relationship with railroad cars and the linkage method can vary greatly depending on the system topology. Therefore, in this paper, we study the validity through simulation modeling related to linkage analysis according to system topology.

The bidirectional DC module type PCS design for the System Inter Connection PV-ESS of Secure to Expandability (계통 연계 PV-ESS 확장성 확보를 위한 병렬 DC-모듈형 PCS 설계)

  • Hwang, Lark-Hoon;Na, Seung-Kwon;Choi, Byung-Sang
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.1
    • /
    • pp.56-69
    • /
    • 2021
  • In this paper, the PV system with a link to the commercial system needs some advantages like small capacity, high power factor, high reliability, low harmonic output, maximum power operation of solar cell, and low cost, etc. as well as the properties of inverter. To transfer the PV energy of photovoltaic power generation system to the system and load, it requires PCS in both directions. The purpose of this paper is to confirm the stable power supply through the load leveling by presenting the PCS considering ESS of photovoltaic power generation. In order to achieve these purpose, 5 step process of operation mode algorithm were used according to the solar insolation amount and load capacity and the controller for charging/ discharging control was designed. For bidirectional and effective energy transfer, the bidirectional converter and battery at DC-link stage were connected and the DC-link voltage and inverter output voltage through the interactive inverter were controlled. In order to prove the validity of the suggested system, the simulation using PSIM was performed and were reviewed for its validity and stability. The 3[kW] PCS was manufactured and its test was conducted in order to check this situation. In addition, the system characteristics suggested through the test results was verified and the PCS system presented in this study was excellent and stronger than that of before system.

Assessment of Anion Generation on the Isolated Trees at Summer (여름철 단일수목의 음이온 발생에 관한 평가)

  • Kim, Jeong-Ho;Seo, Yu-Hwan;Joo, Chang-Hun;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • This research aims to analyze changes in anion according to locations through changes in the measuring point centering on a single tree. The subject tree was the Zelkova serrata which is most widely used as a landscape tree, and the measurement was conducted for a total of 3 days with summer solstice as the basic date. In consideration of the solar altitude and the location of the Zelkova serrata, a total of 4 measurement points - $T_a$ at the opposite direction of the shadow, $T_b$ in the center of the tree $T_c$ in the center of the shadow, and $T_d$ at the end of the shadow - were established. The mean temperature of the measurement days was the highest at $T_a$ with $28.4^{\circ}C$ and was the lowest at $T_c$, in the center of the shadow with $27.9^{\circ}C$. The relative humidity was the lowest with 42.5% at $T_a$ where the temperature was the highest. The amount of insolation was the highest at $T_a$ with $1,024.6W/m^2$, followed by $T_d(701.48W/m^2$), $T_c$($215.63W/m^2$), and $T_b(227.75W/m^2)$, and the anion was the highest at $T_a$ with $654ea/cm^3$, followed by $T_d$, $T_c$, and $T_b$, with $639.4ea/cm^3$, $615.3ea/cm^3$, $612.3ea/cm^3$, respectively. The results of the correlation analysis proved that anion correlated with the temperature, the amount of insolation, and the relative humidity on the significant level. Of these, the temperature and the amount of insolation had the positive correlation with the correlation coefficients of .687 and .332, respectively, and the significance probability of .000, and .037, respectively. The relative humidity was found to have negative correlation. Its correlation coefficient and the significance probability were -.557, and .000, respectively.

Influence of Micrometeorological Elements on Evapotranspiration in Rice (Oryza sativa L.) Crop Canopy (포장(圃場)에서 벼 군락(群落)의 미기상(微氣象) 요소(要素)들이 증발산량(蒸發散量)에 미치는 영향(影響))

  • Kim, Jong-Wook;Kang, Byeung-Hoa;Lee, Jeong-Taek;Yun, Seong-Ho;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.3
    • /
    • pp.231-241
    • /
    • 1992
  • To study the relationships between major micrometeorological elements and their influences on evapotranspiration(ET) in the canopy of two rice cultivars, Daecheongbyo and Samgangbyo, synoptic meteorological factors, micrometeorological elements and ET from the canopy and biomass production were observed at various growth stages in the paddy field of Suwon Weather Forcast Office in 1989. ET from the rice community was highly correlated with the following factors in order of pan evaporation>air temperature>leaf temperature>solar radiation>sunshine duration>difference in vapor pressure depicit(VPD)>water temperature. ET observed showed higher correlation with the evaporation from small pan than that from Class A pan. Varietal difference would be noted in the relationships between ET in Samgangbyo canopy and the evaporations observed from the pans, with which closer a correlation was found in Samgangbyo than in Daecheongbyo. The ratio of canopy ET to the evaporation from Class A pan was maintained over 1.0 through the growth stages with the maximum of 1.9 at the late August. The evaporation observed from Class A pan was amounted to 71.9% of that from small pan. ET was better correlated with solar radiation than with net radiation which reached about 66% of solar radiation. Maximum temperature showed higher correlation with ET than mean air temperature, and also wind speed of 1m above ground revealed positive correlation. The relative humidity, however, had no correlation with the exception of ET in rainy days. A regression model developed to estimate ET as a function of meteorological elements being described with $R^2$ of 0.607 as : $ET=-5.3594+0.7005Pan\;A+0.1926T_{mean}+0.0878_{sol}+0.025RH$.

  • PDF

Numerical analysis of solar pond with insulation layer (단열층을 가지는 솔라 폰드의 수치해석)

  • Yu, Jik-Su;Mun, Soo-Beom
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.264-269
    • /
    • 2016
  • This paper reports a fundamental study of temperature characteristics of a solar pond with an insulation layer. Further, these characteristics were compared with those of a solar pond without the insulation layer. The governing equation was discretized via finite difference method. The governing equations are two-dimensional unsteady-state second-order partial differential equations. The conclusions of the study are as follows: 1) If the depth of the solar pond was increased, the desired effect of increase in temperature was not produced because the amount of solar insolation received by the bottom of the solar pond decreased. 2) As the temperature of the soil during winter is higher than the temperature of the water in a solar pond, heat was transferred from the soil to the solar pond. 3) For the case of the solar pond with insulation layer, it was estimated that the dependence rate of solar energy was 83.3% and that of the boiler was 16.7%.

A Study of Parametric Effects on the Thermal Performance of Flat-Plate Liquid-Heating Solar Collectors (평판형 액체식 집열기 의 각종 변수 가 집열기 의 열성능 에 미치는 영향)

  • 전문헌;윤석범;추교명
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.145-153
    • /
    • 1984
  • In the present work, a computer simulation is performed employing Hottel-Whillier-Bliss model for thermal performance of solar collectors. The major collector parameters examined in the computer simulation are: number of transparent glass covers(N), thermal emissivity of the absorbing plate surface (.epsilon.$_{P}$), absorptivity of absorber plate (.alpha.$_{p}$), flow rate per unit area of collector (G), $L_{b}$ / $k_{b}$ of insulation material, tilt angle of collector (S), and solar insolation(I). By varying numerical values of the major collector parameters around their typical values, the corresponding variations in thermal efficiency curves are examined. In addition, an experimental investigation has been carried out with a slightly modified KAIST collector test loop under a real sun condition in order to compare with the simulation results, examine the applicability of the mathematical model of the collector thermal performance, and study the effect of variation of flow rate (G) on thermal efficiency and the range of optimum flow rate.e.