DOI QR코드

DOI QR Code

Analysis of Hydrodynamics in a Directly-Irradiated Fluidized Bed Solar Receiver Using CPFD Simulation

CPFD를 이용한 태양열 유동층 흡열기의 수력학적 특성 해석

  • Kim, Suyoung (School of Chemical and Material Engineering, Korea National University of Transportation) ;
  • Won, Geunhye (School of Chemical and Material Engineering, Korea National University of Transportation) ;
  • Lee, Min Ji (School of Chemical and Material Engineering, Korea National University of Transportation) ;
  • Kim, Sung Won (School of Chemical and Material Engineering, Korea National University of Transportation)
  • 김수영 (한국교통대학교 응용화학에너지공학부) ;
  • 원근혜 (한국교통대학교 응용화학에너지공학부) ;
  • 이민지 (한국교통대학교 응용화학에너지공학부) ;
  • 김성원 (한국교통대학교 응용화학에너지공학부)
  • Received : 2022.06.29
  • Accepted : 2022.07.14
  • Published : 2022.11.01

Abstract

A CPFD (Computational particle fluid dynamics) model of solar fluidized bed receiver of silicon carbide (SiC: average dp=123 ㎛) particles was established, and the model was verified by comparing the simulation and experimental results to analyze the effect of particle behavior on the performance of the receiver. The relationship between the heat-absorbing performance and the particles behavior in the receiver was analyzed by simulating their behavior near bed surface, which is difficult to access experimentally. The CPFD simulation results showed good agreement with the experimental values on the solids holdup and its standard deviation under experimental condition in bed and freeboard regions. The local solid holdups near the bed surface, where particles primarily absorb solar heat energy and transfer it to the inside of the bed, showed a non-uniform distribution with a relatively low value at the center related with the bubble behavior in the bed. The local solid holdup increased the axial and radial non-uniformity in the freeboard region with the gas velocity, which explains well that the increase in the RSD (Relative standard deviation) of pressure drop across the freeboard region is responsible for the loss of solar energy reflected by the entrained particles in the particle receiver. The simulation results of local gas and particle velocities with gas velocity confirmed that the local particle behavior in the fluidized bed are closely related to the bubble behavior characterized by the properties of the Geldart B particles. The temperature difference of the fluidizing gas passing through the receiver per irradiance (∆T/IDNI) was highly correlated with the RSD of the pressure drop across the bed surface and the freeboard regions. The CPFD simulation results can be used to improve the performance of the particle receiver through local particle behavior analysis.

실리콘 카바이드 입자(평균 입도 123 ㎛)의 유동층 태양열 흡열기의 성능 및 효율에 영향을 미치는 입자 거동 해석을 위해 MP-PIC 모델을 이용하여 전산모사를 수행하였고, 기존 실험결과와의 비교를 통해 검증하였다. 특히, 본 연구에서는 실험적으로 접근하기 어려운 유동층 표면 부근에서의 거동을 모사함으로써 흡열 성능과 입자 거동과의 상호 영향을 분석하였다. CPFD 모사결과는 입자층 및 프리보드에서의 평균 고체체류량과 압력요동 등 수력학적 특성 실험결과를 잘 예측하였다. 입자 흡열기에서 1차적으로 태양열 에너지를 흡수하여 층 내부로 전달하는 층 표면 부근에서의 국부 고체체류량은 입자층 내 기포거동에 따라 중심부에서 상대적으로 낮은 값을 나타내는 불균일 분포를 나타내었다. 프리보드 영역에서 국부 고체체류량은 기체속도가 증가할수록 축방향과 각 높이에서의 횡방향에서 불균일성이 증가하였고, 이는 입자 흡열기의 프리보드 영역 내 비산된 입자에 의해 반사된 태양광 에너지 손실과 연관된 압력강하 상대표준편차 증가의 원인임을 나타내었다. 입자 흡열기 내 기체속도 증가에 따른 국부적인 기체 및 입자 속도의 변화에 대한 고찰을 통해, 유동층 내 국부적인 입자거동 특성은 Geldart B 입자 물성과 관련된 입자층 내 기포 거동과 밀접하게 연관됨을 확인하였다. 유동층 입자 흡열기의 성능 척도인 일사량 당 유동기체의 출입구 온도차(∆T/IDNI)는 입자 층 표면 및 표면 상부 프리보드 영역 내 압력요동 RSD와 상관관계가 매우 높음을 확인하였고, 이 결과는 흡열기 성능 개선에 활용할 수 있을 것으로 판단되었다.

Keywords

Acknowledgement

이 성과는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2019R1A2C1011671, NRF-2021M3I3A1084951).

References

  1. Hwang, H., Mun, J., Kim, J., "Economic Benefits of Integration of Supplementary Biopower and Energy Storage Systems in a Solar-Wind Hybrid System," Korean Chem. Eng. Res., 58(3), 381-389(2020).
  2. Shahabuddin, M., Alim, M. A., Alam, T. Mofijur, M., Ahmed, S. F. and Perkins, G., "A Critical Review on the Development and Challenges of Concentrated Solar Power Technologies," Sustain. Energy Technol. Assess., 47, 101434(2021).
  3. Kalogirou, S., "The Potential of Solar Industrial Process Heat Applications," Appl. Energy, 76(4), 337-361(2003). https://doi.org/10.1016/S0306-2619(02)00176-9
  4. Almendros-Ibanez, J. A., Fernandez-Torrijos, M., Diaz-Heras, M., Belmonte, J. F. and Sobrino, C., "A Review of Solar Thermal Energy Storage in Beds of Particles: Packed and Fluidized Beds," Sol Energy, 192, 193-237(2019). https://doi.org/10.1016/j.solener.2018.05.047
  5. Park, S. H., Kim, S. and Kim, S. W., "Heat Absorption Characteristics of Gas in a Directly Irradiated Solar Fluidized Bed Receiver with tube Shaped Immersed Transmission Window," Sol Energy, 232, 388-397(2022). https://doi.org/10.1016/j.solener.2022.01.011
  6. Seo, S. B., Go, E. S., Ling, J. L. J. and Lee, S. H., "Techno-economic Assessment of a Solar-assisted Biomass Gasification Process," Renewable Energy, 193, 23-31(2022). https://doi.org/10.1016/j.renene.2022.05.033
  7. Seo, S. B., Ahn, H., Go, E. S., Ling, L. J. J., Siambun, N. J., Park, Y. and Lee, S. H., "Evaluation of the Solar Thermal Storage of Fluidized Bed Materials for Hybrid Solar Thermo-chemical Processes," Biomass Conv. Bioref., March(2022). https://doi.org/10.1007/s13399-022-02609-8.
  8. Jiang, K., Du, X., Zhang, Q., Kong, Y., Xu, C. and Ju, X., "Review on Gas-solid Fluidized Bed Particle Solar Receivers Applied in Concentrated Solar Applications: Materials, Configurations and Methodologies," Renew. Sust. Energ. Rev., 150, 111479(2021).
  9. Park, S. H., Yeo, C. E., Lee, M. J. and Kim, S. W., "Effect of Bed Particle Size on Thermal Performance of a Directly-Irradiated Fluidized Bed Gas Heater," Processes, 8(8), 967(2020).
  10. Park, S. H. and Kim, S. W., "Characteristics of Heat Absorption by Gas in a Directly-irradiated Fluidized Bed Particle Receiver," Korean Chem. Eng. Res., 59(2), 239-246(2021).
  11. Atsonios, K., Nikolopoulos, A., Karellas, S., Nikolopoulos, N., Grammelis, P. and Kakaras, E., "Numerical Investigation of the Grid Spatial Resolution and the Anisotropic Character of EMMS in CFB Multiphase Flow," Chem. Eng. Sci., 66(17), 3979-3990(2011). https://doi.org/10.1016/j.ces.2011.05.024
  12. Bandara, J. C., Jayarathna, C., Thapa, R., Nielsen, H. K., Moldestad, B. M. E. and Eikeland, M. S., "Loop Seals in Circulating Fluidized Beds - Review and Parametric Studies Using CPFD Simulation," Chem. Eng. Sci., 227, 115917(2020).
  13. Zhou, Q. and Wang, J., "CFD Study of Mixing and Segregation in CFB Risers: Extension of EMMS Drag Model to Binary Gas-Solid Flow," Chem. Eng. Sci., 122, 637-651(2015). https://doi.org/10.1016/j.ces.2014.10.025
  14. Liang, Y., Zhang, Y., Li, T. and Lu, C. A., "Critical Validation Study on CPFD Model in Simulating Gas-Solid Bubbling Fluidized Beds," Powder Technol., 263, 121-134(2014). https://doi.org/10.1016/j.powtec.2014.05.003
  15. Lee, J. M., Kim, D. W., Park, K. I. and Lee, K. H., "Analysis of Fluidization in a Fluidized Bed External Heat Exchanger using Barracuda Simulation," Korean Chem. Eng. Res., 58(4), 642-650(2020).
  16. Go, E. S., Kang, S. Y., Seo, S. B., Kim, H. W. and Lee, S. H., "Slug Characteristics in a Bubbling Fluidized Bed Reactor for Polymerization Reaction," Korean Chem. Eng. Res., 58(4), 651-657(2020).
  17. Lim, J. H. and Lee, D. H., "Two- and Three-dimensional Analysis on the Bubble Flow Characteristics Using CPFD Simulation," Korean Chem. Eng. Res., 55(5), 698-703(2017). https://doi.org/10.9713/KCER.2017.55.5.698
  18. Liu, H., Cattolica, R. J. and Seiser, R., "Operating Parameter Effects on the Solids Circulation Rate in the CFD Simulation of a Dual Fluidized-bed Gasification System," Chem. Eng. Sci., 169, 235-245(2017). https://doi.org/10.1016/j.ces.2016.11.040
  19. Lim, J. H., Bae, K., Shin J. H., Kim, J. H., Lee, D. H., Han, J. H. and Lee, D. H., "Effect of Particle-particle Interaction on the Bed Pressure Drop and Bubble Flow by Computational Particlefluid Dynamics Simulation of Bubbling Fluidized Beds with Shroud Nozzle," Powder Technol., 288, 315-323(2016). https://doi.org/10.1016/j.powtec.2015.11.017
  20. Kim, S. W., "Effect of Height on CNT Aggregates Size and Shape in Freeboard Region of a Fluidized Bed," Korean Chem. Eng. Res., 57(1), 105-110(2019).
  21. Johnsson, F., Zijerveld, R. C., Schouten, J. V., Van den Bleek, C. M. and Leckner, B., "Characterization of Fluidization Regimes by Time-series Analysis of Pressure Fluctuations," Int. J. Multiph. Flow, 26(4), 663-715(2000). https://doi.org/10.1016/S0301-9322(99)00028-2
  22. Kunii, D. and Levenspiel, O., Fluidization engineering, 2nd ed., Butterworth- Heinemann, Boston(1991).
  23. Tregambi, C., Chirone, R., Montagnaro, F., Salatino, P. and Solimene, R., "Heat Transfer in Directly Irradiated Fluidized Beds," Sol Energy, 129, 85-100(2016). https://doi.org/10.1016/j.solener.2016.01.057
  24. Kim, S. W. and Kim, S. D., "Heat Transfer Characteristics in a Pressurized Fluidized Bed of Fine Particles with Immersed Horizontal Tube Bundle," Int. J. Heat Mass Transf., 64, 269-277(2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.04.045
  25. Calderon, A., Barreneche, C., Palacios, A., Segarra, M., Prieto, C., Rodriguez-Sanchez, A. and Fernandez, A. I., "Review of Solid Particle Materials for Heat Transfer Fluid and Thermal Energy Storage in Solar Thermal Power Plants," Energy Storage, 1(4), e63(2019).