• Title/Summary/Keyword: 태양고도

Search Result 239, Processing Time 0.024 seconds

Distributed Generation of Solar Ship (태양광 선박의 분산전원화)

  • Kim, Hee-Je;Lee, Kyung-Jun
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.31
    • /
    • pp.25-36
    • /
    • 2011
  • 경제성장과 산업 사회생활의 고도화에 따라서 증대하는 전력수요에 대해서, 에너지자원량과 지구환경의 제약이 거론되고 있는 최근의 에너지를 둘러싼 심각한 상황인식을 고려하여 전력 수급의 장기적 안정을 확보하기 위해서는, 전력수급양면에 걸친 대책이 강화되어야 한다는 것이 현재 관련 전문가들의 공통된 의견으로 수렴되고 있다. 따라서 종래의 전력공급은 대규모 전원의 개발을 중심으로 수요에 대응해 왔지만, 앞으로는 수요의 관리 제어를 고려한 부하 관리(Load Management) 또는 수요측관리(Demand-Side Management)를 적극적으로 추진해가고, 나아가 다양한 에너지원의 효율적 활용을 목표로 한 분산형전원의 개발과 도입을 적극적으로 추진하는 등의 폭넓은 정책이 마련 시행될 필요가 있다. 그 대안중의 하나로 태양광 하이브리드 선박이 널리 보급될 경우 하나의 분산전원으로서 그 역할을 할 것으로 기대된다.

  • PDF

KOMPSAT 삼축자력계로부터 관측된 지구자기장 분석

  • 황종선;김성용;이선호;민경덕;김정우
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.143-149
    • /
    • 2003
  • 다목적위성 1호(KOMPSAT-1, The first Korea Multi-Purpose Satellite)에 장착된 위성 자세제어용 3축 자력계(TAM, Three-Axis Magnetometer)로부터 2000년 6월 19일에서 21일 사이에 측정된 지구자기장을 분석하였다. TAM Telemetry 값을 지구관성좌표계에서 지구고정좌표계로 우선 변환시킨 후에 다시 구면좌표계로 변환하여 자료를 처리하였다. 지구자기장의 영향 이외의 위성내의 유도 전류나 온도변화로 인한 에러, 태양풍의 영향 등을 제거하였고 태양에 의한 영향을 제거하기 위해 제도를 지방시에 따라 상승 및 하강과 두 그룹으로 나눈 후 파동수대비법을 이용해 두 그룹 사이에 서로 역으로 대비되는 (inversely-correlated) 성분을 제거하였다. 측선 잡음을 제거하기 위하여 파동수 영역에서 Quadrant Swapping법을 도입하였고, 이로부터 연구 기간 중 최종적인 지구자기장을 추출하였다. KOMSAT TAM 으로부터 추출된 자기장의 주성분(corefield)을 동일 기간 중 KOMSAT과 유사한 고도에서 지구자기장 관측을 전문적으로 수행한 Ørsted 위성 관측값과 비교한 결과 이들 사이의 상관계수는 0.97로 매우 높게 나타났다 위성 자세보정용 자력계로 부터 관측된 자기장으로부터 신뢰도 있는 주성분 추출이 가능해짐에 따라 이로부터 전지구 구면조화계수를 유도할 경우 지구자기장 전문 관측위성이 존재하지 않는 기간 및 고도에 대한 자기장 연구가 가능하다.

  • PDF

Predicting Road Surface Temperature using Solar Radiation Data from SOLWEIG(SOlar and LongWave Environmental Irradiance Geometry-model): Focused on Naebu Expressway in Seoul (태양복사모델(SOLWEIG)의 복사플럭스 자료를 활용한 노면온도 예측: 서울시 내부순환로 대상)

  • AHN, Suk-Hee;KWON, Hyuk-Gi;YANG, Ho-Jin;LEE, Geun-Hee;YI, Chae-Yeon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.156-172
    • /
    • 2020
  • The purpose of this study was to predict road surface temperature using high-resolution solar radiation data. The road surface temperature prediction model (RSTPM) was applied to predict road surface temperature; this model was developed based on the heat-balance method. In addition, using SOLWEIG (SOlar and LongWave Environmental Irradiance Geometry-model), the shadow patterns caused by the terrain effects were analyzed, and high-resolution solar radiation data with 10 m spatial resolution were calculated. To increase the accuracy of the shadow patterns and solar radiation, the day that was modeled had minimal effects from fog, clouds, and precipitation. As a result, shadow areas lasted for a long time at the entrance and exit of a tunnel, and in a high-altitude area. Furthermore, solar radiation clearly decreased in areas affected by shadows, which was reflected in the predicted road surface temperatures. It was confirmed that the road surface temperature should be high at topographically open points and relatively low at higher altitude points. The results of this study could be used to forecast the freezing of sections of road surfaces in winter, and to inform decision making by road managers and drivers.

Development of an Embedded Solar Tracker using LabVIEW (LabVIEW 적용 임베디드 태양추적장치 개발)

  • Oh, Seung-Jin;Lee, Yoon-Joon;Kim, Nam-Jin;Oh, Won-Jong;Chun, Won-Gee
    • Journal of Energy Engineering
    • /
    • v.19 no.2
    • /
    • pp.128-135
    • /
    • 2010
  • This paper introduces step by step procedures for the fabrication and operation of an embedded solar tracker. The system presented consists of application software, compactRIO, C-series interface module, analogue input module, step drive, step motor, feedback devices and other accessories to support its functional stability. CompactRIO that has a real-tim processor allows the solar tracker to be a stand-alone real time system which operates automatically without any external control. An astronomical method and an optical method were used for a high-precision solar tracker. CdS sensors are used to constantly generate feedback signals to the controller, which allow a solar tracker to track the sun even under adverse conditions. The database of solar position and sunrise and sunset time was compared with those of those of the Astronomical Applications Department of the U.S. Naval Observatory. The results presented here clearly demonstrate the high-accuracy of the present system in solar tracking, which are applicable to many existing solar systems.

A Novel PV Tracking System Control Considering the Power Loss with Change of Insolation (일사량 변화에 다른 전력손실을 고려한 새로운 태양광 추적 시스템 제어)

  • Park, Ki-Tae;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.6
    • /
    • pp.89-99
    • /
    • 2008
  • In this paper proposes a novel tacking algorithm regarding the power loss when operating a tracking system for a rapidly changing insolation to improve the power of PV hacking system. The tracking system of sensor method used in a conventional PV power station is unable to exactly track a sun position when lacking in the intensity of radiation and has the problem is malfunction of tracking system by a rapidly changing climatic. The tracking system of program method spends too much energy on the unnecessary operation of tracking system because that is unable to adapt itself to a outside factor of climatic environment. In case of tracking an azimuth and altitude of the sun in realtime, therefore, the actual PV power is less increasing than the power of tracking system fixed a specific position. To reduce the power loss, this pap proposes a novel control algorithm of the tracking system. Also, this paper is analyzed efficiency of traditional solar tracking method and proposed method, prove validity of proposed algorithm through demonstrable study.

Analysis of Slope Characteristics Around the Location of Solar Power Plants in Gangwon Province, South Korea (강원 지역 산지 태양광 발전시설이 설치된 지역의 사면특성 분석)

  • Beomjun Kim;Jiho Kim;Yongcheol Park;Chanyoung, Yune
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.11
    • /
    • pp.33-40
    • /
    • 2023
  • To analyze the slope characteristics of solar power plant installation region in Gangwon province, the installation status of solar power plant in Gangneung and Wonju city were investigated using GIS technique and satellite map. The solar power plant installation of Gangneung and Wonju city is 36 and 48 regions. Through topographical data of solar power plant installation region, a database for area, slope inclination, and elevation was construced. Based on the database, the slope characteristics of solar power plant installation region in Gangneung and Wonju city was analyzed. The results showed that the slope of Wonju city has a relatively higher slope inclination than Gangneung city. In addition, Gangneng and Wonju cities have many regions with maximum inclination of 15° and 34° or more within the solar power plant.

Solar Radiation Measurement and Analysis of a High Mountain Area (고산지대의 일사량 특성분석 - 소백산과 그 인접 저지대를 중심으로 -)

  • Jo, Dok-Ki;Lee, Tae-Kyu;Chun, Il-Soo;Jeon, Hong-Seok;Auh, Chung-Moo
    • Solar Energy
    • /
    • v.16 no.2
    • /
    • pp.49-63
    • /
    • 1996
  • Site elavation is one of the major factors which is influencing the incoming insolation. Because nonpermanent gases like ozone, water vapor are unmixed components of the atmosphere and their concentrations are function of height, the site elevation effects the relative proportion of the atmospheric constituents. We have measured solar radiation on Sobaek(1,350m) and in Poonggi area(280m). These values were compared to investigate the their charateristics and the potential for the solar utilization as an alternative energy for both high altitude area and low altitude area. From the results, we conclude that 1) Yearly mean 4,093 $kcal/m^2$. day of the horizontal global radiation in Mt. Sobaek was evaluated for clear day. 2) Insolation on Mt. Sobaek is $6{\sim}7%$ higher than Poonggi area during summer and winter seasons. 3) A significant difference of atomospheric clearness index is observed between Mt. Sobaek and Poonggi area at the same latitude.

  • PDF

A Blind Design of Sunlighting Using Total Reflection (전반사를 이용한 자연채광 블라인드 디자인)

  • Sim, Choong-Gyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.1
    • /
    • pp.39-44
    • /
    • 2012
  • The new blind design of sunlighting has been suggested in this study. The material in this blind becomes transparent but the blind has the parabolic edge section having the perpendicular line on a side. The material of this blind is PolyMethly MethAcrylate(PMMA). In this parabolic edge section, the front side of the blind is designed perpendicular to the ground. But the back side is a little tilted to the front side. The rays of reflected sun at the front side can be easily reflected totally by the back side. If the inclination angle in this parabolic edge section at the back side is designed with $15^{\circ}$, it can transmit the rays of sun when the height of the sun is lower than $45^{\circ}$. But it can reflect the rays of sun when the height of the sun is upper than $45^{\circ}$. The suggested design of blind can be applied to the existing blind installation. Although the material in this blind becomes transparent, the rays of sun can be reflected totally at midday. There is also prospect outside of the blind because the material becomes transparent. Several inclination angles in the suggested design have been simulated for the various height of sun. Total reflections have been occurred by the suggested blind design at midday and it can be useful to shut out the sunlight.

Fuel Optimization for Low Earth Orbit Maintenance (최적화 기법을 이용한 초저고도 운용위성 연료량 분석)

  • Park, Yong-Jae;Park, Sang-Young;Kim, Young-Rok;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.2
    • /
    • pp.167-180
    • /
    • 2008
  • The resolution of Earth images taken from a satellite has close relation with satellite's altitude. If a satellite has lower altitude, it gets a picture having better resolution. However the satellite will be exposed to heavier air drag and will spend more fuel to maintain its altitude for a desired mission. Therefore, in this study, the required fuel to maintain very low earth orbit(LEO) with severe air drag is analyzed using optimization method such as collocation method. The required fuel to maintain the low altitude has significantly increased as the mission altitude is lowered and the solar activity is maximized. This study also shows that the fuel reduced by increasing the period of the satellite maneuver is very small, and that slightly increasing the satellite's mission altitude is much effective in reducing the amount of fuel to maintain its altitude. The calculated fuel to maintain very low earth orbit in this study would give useful information in planning the budget of fuel and cost for LEO satellites.

LUNAR ECLIPSE ANALYSIS FOR KOMPSAT (다목적실용위성의 월식 현상 분석)

  • 김응현;이상률;김학정
    • Journal of Astronomy and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.449-458
    • /
    • 1998
  • The Korea Muliti-Purpose Satellite(KOMPSAT) uses a sun-synchronous orbit with an altitude 685km as mission orbit and undergoes earth eclipses and infrequently lunar eclipses. Lunar eclipses occur when the moon is located between the sun and the satellite and blocks partially or fully the sunlight. The eclipse causes the satellite to increase battery discharge times and affects satellite lifetime and mission operation. The KOMPSAT lunar eclipses can cause additional effects to energy balance and battery disc of the KOMPSAT lunar eclipse for 3 year mission lifetime. Also mission planning scenario is presented for lunar eclipses at the KOMPSAT Grouns Station(KGS).

  • PDF