DOI QR코드

DOI QR Code

Predicting Road Surface Temperature using Solar Radiation Data from SOLWEIG(SOlar and LongWave Environmental Irradiance Geometry-model): Focused on Naebu Expressway in Seoul

태양복사모델(SOLWEIG)의 복사플럭스 자료를 활용한 노면온도 예측: 서울시 내부순환로 대상

  • 안숙희 (한국외국어대학교 대기환경연구센터) ;
  • 권혁기 (한국외국어대학교 대기환경연구센터) ;
  • 양호진 (한국외국어대학교 대기환경연구센터) ;
  • 이근희 (한국외국어대학교 대기환경연구센터) ;
  • 이채연 (한국외국어대학교 대기환경연구센터)
  • Received : 2020.11.11
  • Accepted : 2020.12.04
  • Published : 2020.12.31

Abstract

The purpose of this study was to predict road surface temperature using high-resolution solar radiation data. The road surface temperature prediction model (RSTPM) was applied to predict road surface temperature; this model was developed based on the heat-balance method. In addition, using SOLWEIG (SOlar and LongWave Environmental Irradiance Geometry-model), the shadow patterns caused by the terrain effects were analyzed, and high-resolution solar radiation data with 10 m spatial resolution were calculated. To increase the accuracy of the shadow patterns and solar radiation, the day that was modeled had minimal effects from fog, clouds, and precipitation. As a result, shadow areas lasted for a long time at the entrance and exit of a tunnel, and in a high-altitude area. Furthermore, solar radiation clearly decreased in areas affected by shadows, which was reflected in the predicted road surface temperatures. It was confirmed that the road surface temperature should be high at topographically open points and relatively low at higher altitude points. The results of this study could be used to forecast the freezing of sections of road surfaces in winter, and to inform decision making by road managers and drivers.

본 연구는 대상도로인 내부순환로에 대해 태양복사모델(SOlar and LongWave Environmental Irradiance Geometry-model, SOLWEIG)을 통해 산출한 도로의 그림자 패턴을 사용하여 항상 그늘이 지는 음영지역을 살펴보고, 열수지법을 기반으로 한 노면온도예측모델(road surface temperature prediction model, 이하 RSTPM)과 SOLWEIG 모델을 연계하여 고해상도의 태양복사정보를 활용한 도로의 노면온도를 예측하고자 하였다. 우선, 그림자 패턴 및 복사플럭스 산출의 정확도를 높이기 위하여 안개, 구름, 강수 등의 영향을 최소화할 수 있는 사례일을 선정하여, 고도 및 지형의 효과에 따른 그림자의 영향을 살펴보았다. 그 결과, 터널 입출구와 고도가 높은 지역에서 그림자 영역이 오래 지속되었고, 그림자의 영향을 많이 받는 구간의 복사량 감소가 뚜렷하게 나타났다. 이는 노면온도 예측결과에 반영되어 지형적으로 개방된 지점에서는 노면온도가 높게 예측되고, 고도가 높은 지점들은 그렇지 않은 지점에 비해 상대적으로 낮게 예측되었다. 본 연구의 결과는 겨울철 기상상황에 따른 도로 결빙구간을 예측하여 도로 관리자 및 운전자의 의사결정 자료로서의 활용이 기대된다.

Keywords

Acknowledgement

본 논문은 국토교통부 국토교통기술촉진연구사업(20CTAP-C157871-01)의 지원에 의하여 수행되었습니다.

References

  1. Fujimoto, A., Watanabe, H., and Fukuhara, T. 2008. Effects of Vehicle Heat on Road Surface Temperature of Dry Condition. Sirwec 2008 (Prague, 14-16 May, 2008), ID05. (Available online at http://sirwec.org/14th-conference-prague-czech-republic. (Accessed Dec 15, 2020)).
  2. Fujimoto, A., Watanabe, H., and Fukuhara, T. 2009. Influence of vehicle related heats on black ice. 13th Road Engineering Association of Asia and Australasia (REAAA) Conference (Incheon City, 23-26 September, 2009). (Available online at http://hdl.handle.net/10098/3190. (Accessed Dec 15, 2020)).
  3. KoROAD. 2020."Total traffic accidents decreased, but traffic accidents on ice roads increased" Press release. https://www.koroad.or.kr/kp_web/krPrList.do?board_code=GABBS_050. (Accessed Dec 15, 2020).
  4. Lee, D.H, W.S. Jeong, H.J. Kim, and J. Kim. 2013. Study about the Evaluation of Freezing Risk Based Road Surface of Solar Radiation. Journal of the Korea Institute for Structural Maintenance and Inspection 17(5):130-135. https://doi.org/10.11112/jksmi.2013.17.5.130
  5. Lee, J.H., J.h. Roh, and S.J. Park. 2017. Development of Hydroplaning Estimation on an Uninterrupted Road. International Journal of Highway Engineering 19(6): 147-153. https://doi.org/10.7855/IJHE.2017.19.6.147
  6. Lindberg F., Holmer B., Thorsson S., 2008: SOLWEIG 1.0 - Modelling spatial variations of 3D radiant fluxes and mean radiant temperature in complex urban settings. Int J Biometeorology, 52, 697-713. https://doi.org/10.1007/s00484-008-0162-7
  7. Lindberg, F. and C. Grimmond, 2011,"The influence of vegetation and building morphology on shadow patterns and mean radiant temperature in urban areas: Model development and evaluation," Theoretical and Applied Climatology, 105(3), 311-323. https://doi.org/10.1007/s00704-010-0382-8
  8. Lindberg, F., S. Onomura, and C. S. B. Grimmond, 2016,"Influence of ground surface characteristics on the mean radiant temperature in urban areas," International Journal of Biometeorology, 60(9), 1439-1452. https://doi.org/10.1007/s00484-016-1135-x
  9. Lim J.H., K.M. Shin, S.W. Baek, and H.R. Kim. 2019. Operation of road freezing disaster prevention service for Highway. Proceedings of the Autumn Meeting of Korean Meteorological Society 2019. p.410.
  10. Meng, C. L. 2014. A Numerical Forecast Model for Road Meteorological Services in Beijing. 17th International Road Weather Conference (Andorra, 30 January-1 February, 2014), ID0005 (Available online at http://develop.sirwec.org/17th-conference-2016-la-massana-andorra. (Accessed Dec 15, 2020)).
  11. Park, M.S., S.J. Joo, and Y.T. Son. 2014. Development of Road Surface Temperature Prediction Model using the Unified Model output (UM-Road). Atmosphere 24(4): 471-479. https://doi.org/10.14191/Atmos.2014.24.4.471
  12. Sato, N., Thornes, J E., Maruyama, T., Sugimura, A., Yamada, T. 2004. Road Surface Temperature Forecasting: Case Study in a Mountainous Region of Japan. Transportation Research Circular No.EC603: 414-421.
  13. Son, Y.T., J.S. Jeon, and J.M. Whang. 2015. Developing a Model to Predict Road Surface Temperature using a Heat-Balance Method, Taking into Traffic Volume. The Journal of The Korea Institute of Intelligent Transport Systems 14(2):30-38. https://doi.org/10.12815/kits.2015.14.2.030
  14. Yang, C.H., M.S. Park, and D.G. Yun. 2011. A Road surface Temperature Prediction Modeling for Road Weather Information System. Journal of Korean Society of Transportation 29(2):123-131.
  15. Yang, C.H., C.J. Yoon, J.G. Kim, J.-H. Park, and D.-G. Yun. 2016. Reliability of Change Patterns of Road Surface Temperature and Road Segmentation based on Road Surface Temperature. International Journal of Highway Engineering 18(4):1-8. https://doi.org/10.7855/IJHE.2016.18.4.001
  16. Yang, H.J., C.Y. Yi, and M.K. Bae. 2019. The Analysis of Road Surface Characteristics for Road Risk Management in Heat Wave: Focused on Cheongju City. Journal of Environmental Policy and Administration 27(3):51-73. https://doi.org/10.15301/jepa.2019.27.3.51
  17. Yi, C., K.R. Kim, S.M. An, and Y.J., Choi. 2014. Impact of the Local Surface Characteristics and the Distance from the Center of Heat Island to Suburban Areas on the Night Temperature Distribution over the Seoul Metropolitan Area. Journal of the Korea Association of Geographic Information Studies 17(1): 35-49. https://doi.org/10.11108/kagis.2014.17.1.035
  18. Yi, C., H.G., Kwon., and F. Lindberg. 2018. Radiation Flux Impact in High Density Residential Areas. Journal of the Korea Association of Geographic Information Studies 21(4):40-46.