• Title/Summary/Keyword: 탐지 및 식별

Search Result 301, Processing Time 0.035 seconds

Cryptography Module Detection and Identification Mechanism on Malicious Ransomware Software (악성 랜섬웨어 SW에 사용된 암호화 모듈에 대한 탐지 및 식별 메커니즘)

  • Hyung-Woo Lee
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Cases in which personal terminals or servers are infected by ransomware are rapidly increasing. Ransomware uses a self-developed encryption module or combines existing symmetric key/public key encryption modules to illegally encrypt files stored in the victim system using a key known only to the attacker. Therefore, in order to decrypt it, it is necessary to know the value of the key used, and since the process of finding the decryption key takes a lot of time, financial costs are eventually paid. At this time, most of the ransomware malware is included in a hidden form in binary files, so when the program is executed, the user is infected with the malicious code without even knowing it. Therefore, in order to respond to ransomware attacks in the form of binary files, it is necessary to identify the encryption module used. Therefore, in this study, we developed a mechanism that can detect and identify by reverse analyzing the encryption module applied to the malicious code hidden in the binary file.

Analysis on Figure of Merits of Small SAR Constellation Satellites for Targets Detection (표적탐지를 위한 소형 SAR 군집위성의 성능지수 분석)

  • Song, Sua;Kim, Hongrae;Chang, Young-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.2
    • /
    • pp.130-142
    • /
    • 2019
  • For a preemptive strike against a Time Critical Target(TCT), such as Transporter-Erector-Launcher(TEL), the detection capability of capturing launch signals in the Area of Interest(AoI) is important. In this study, the characteristics of the revisit time and the response time of 6~48 small SAR constellation satellites were analyzed. In particular, the revisit time was analyzed for all regions of North Korea and specific regions, and the response time was classified into [Scenario 1] to identify fixed targets and [Scenario 2] to detect and identify moving targets. In particular, the response time analysis for the TCT detection mission operation in [scenario 2] was performed through optimization analysis of observation cumulative coverage for a specific area. Finally, the configuration of constellation satellites for optimal performance of the detection mission was estimated.

Autonomous Battle Tank Detection and Aiming Point Search Using Imagery (영상정보에 기초한 전차 자율탐지 및 조준점탐색 연구)

  • Kim, Jong-Hwan;Jung, Chi-Jung;Heo, Mira
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • This paper presents an autonomous detection and aiming point computation of a battle tank by using RGB images. Maximally stable extremal regions algorithm was implemented to find features of the tank, which are matched with images extracted from streaming video to figure out the region of interest where the tank is present. The median filter was applied to remove noises in the region of interest and decrease camouflage effects of the tank. For the tank segmentation, k-mean clustering was used to autonomously distinguish the tank from its background. Also, both erosion and dilation algorithms of morphology techniques were applied to extract the tank shape without noises and generate the binary image with 1 for the tank and 0 for the background. After that, Sobel's edge detection was used to measure the outline of the tank by which the aiming point at the center of the tank was calculated. For performance measurement, accuracy, precision, recall, and F-measure were analyzed by confusion matrix, resulting in 91.6%, 90.4%, 85.8%, and 88.1%, respectively.

Radio Frequency-based Drone Detection and Classification Using Discrete Fourier Transform and LightGBM

  • Ki-Hyeon Sung;Soo-Jin Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.10
    • /
    • pp.59-68
    • /
    • 2024
  • In this study, we proposed an efficient model that can detect and classify the drones and related devices based on radio frequency signals. In order to increase the applicability in the battlefield, proposed model was designed to be lightweight, to ensure rapid detection and high detection accuracy. Data preprocessing was performed by applying a Discrete Fourier Transform (DFT) that is faster than Hilbert-Huang Transform (HHT). We adopted the LightGBM model as the learning model, which can be easily used by non-professionals and guarantees excellent performance in terms of classification speed and accuracy. CardRF dataset was used to verify the performance of the proposed model. As a result of the experiment, the accuracy of 3 classes classification for detecting and classifying drones, WiFi, and Bluetooth device was 99.63% when the number of sample points was set to 100k and 99.40% when set to 500k during the data preprocessing with DFT. And, in the 10 classes classification for 6 drones, 2 Bluetooth devices, and 2 WiFi devices, the accuracy was 95.65% for 100k and 96.83% for 500k, confirming significantly improved detection performance compared to previous studies.

Feature Extraction using Dynamic Time-warped Algorithms based on Discrete Wavelet Transform in Wireless Sensor Networks for Barbed Wire Entanglements Surveillance (철조망 감시를 위한 무선 센서 네트워크에서 이산 웨이블릿 변환 기반의 동적 시간 정합 알고리즘을 이용한 특징 추출)

  • Lee, Tae-Young;Cha, Dae-Hyun;Hong, Jin-Keun;Han, Kun-Hui;Hwang, Chan-Sik
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.185-189
    • /
    • 2009
  • 무선 센서 네트워크는 화산 감시, 전장 감시, 동물 서식지 감시, 건축물의 감시, 농장 관리, 의료분야등 다양한 분야에서 연구되고 있다. 국내에서도 국가 정책 사업으로 교량 및 건축물의 균열 감시, 표적의 침입 탐지 및 식별을 위한 무선 센서 네트워크 연구가 활발히 진행 중이다. 특히, 무선 센서 네트워크의 다양한 분야의 연구 중에서 철조망을 이용한 표적의 침입 탐지 및 식별에 관한 연구는 산업 시설, 보안지역, 교도소, 군사지역, 공항 등 다양한 분야에서 사용된다. 현재 철조망 감시는 대부분 유선 센서 노드를 통한 유선 센서 네트워크 환경에서 이루어지고 있다. 기존의 유선 센서 네트워크는 높은 데이터 전송률을 통해 수신되는 높은 정보의 신호를 이용하여 고속 푸리에 변환에 의한 신호의 주파수 분석 기법을 사용해 왔다. 하지만, 유선 센서 네트워크의 높은 데이터 전송률과 비교하여 무선 센서 네트워크의 센서 노드는 유선 센서 네트워크에 비해 매우 낮은 데이터 전송률을 가진다. 따라서 무선 센서 네트워크에서 수신되는 신호의 정보가 매우 낮고, 유선 센서 네트워크에서 사용된 고속 푸리에 변환에 의한 신호의 주파수 분석에 따른 주파수별 특징 추출을 할 수 없다. 따라서 본 논문에서는 철조망 감시를 위한 높은 데이터 전송률을 보장하는 유선 센서 네트워크에 비해 제한된 통신자원과 센서 노드의 낮은 데이터 전송률로 인해 수신되는 한정적인 신호의 정보를 이용한 무선 센서 네트 워크에서 철조망의 표적 침입 탐지 및 식별을 위한 특징 추출 알고리즘을 제안한다.

  • PDF

Detecting Spam Data for Securing the Reliability of Text Analysis (텍스트 분석의 신뢰성 확보를 위한 스팸 데이터 식별 방안)

  • Hyun, Yoonjin;Kim, Namgyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.493-504
    • /
    • 2017
  • Recently, tremendous amounts of unstructured text data that is distributed through news, blogs, and social media has gained much attention from many researchers and practitioners as this data contains abundant information about various consumers' opinions. However, as the usefulness of text data is increasing, more and more attempts to gain profits by distorting text data maliciously or nonmaliciously are also increasing. This increase in spam text data not only burdens users who want to obtain useful information with a large amount of inappropriate information, but also damages the reliability of information and information providers. Therefore, efforts must be made to improve the reliability of information and the quality of analysis results by detecting and removing spam data in advance. For this purpose, many studies to detect spam have been actively conducted in areas such as opinion spam detection, spam e-mail detection, and web spam detection. In this study, we introduce core concepts and current research trends of spam detection and propose a methodology to detect the spam tag of a blog as one of the challenging attempts to improve the reliability of blog information.

선박방사소음의 측정및 평가방법

  • 윤종락
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.232-238
    • /
    • 1998
  • 선박 방사소음은 군사적 목적의 수동소나가 탐지대상으로 하는 수중음향 표적이라 할 수 있다. 따라서 수동소나 운용자는 대잠전 수행이전에 다양한 선박들에 대한 방사소음을 측정, 분석하여 개별 선박 고유의 음향 특징을 수집함으로써 실전 상황에서 미지 선박이 탐지되는 경우 이들 자료를 식별의 기초자료로 활용하고자 한다. 또한 새로운 수동소나의 개발자나 스텔스 능력의 선박 설계자 역시 선박방사소음 특징자료를 필요로한다. 본 글은 선박방사소음의 발생기구, 측정시스템 및 측정자료의 분석 평가 기술을 연구분석한 내용이다.

  • PDF

Anomaly Detection Algorithm Performance Analysis of Cloud Operating Environment using Stress Test (부하테스트를 활용한 클라우드 운영 환경의 이상탐지 알고리즘 성능 분석)

  • Kim, Jin Hui;Lee, Chan Jae;Yun, Ho Young
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.837-840
    • /
    • 2021
  • 안정적인 서버 운영을 위해 이상 패턴 및 개체를 식별하는 이상탐지 연구가 활발하게 연구되어 오고 있다. 이상탐지의 대표적인 예로 서버의 사용량 증가를 꼽을 수 있지만, 실제 이상 데이터 수집 및 현상의 재현이 어렵다는 점은 해당 연구의 어려움으로 존재한다. 본 연구는 다양한 시나리오 기반의 부하테스트를 설계하고, 클라우드 환경에서 이상 데이터를 생성 및 수집하였다. 해당 데이터는 이상탐지에 대표적으로 사용되는 알고리즘의 성능을 비교 분석에 활용하였으며, 실험을 통해 각 알고리즘의 신뢰 수준을 확인하였다. 이는 다양한 서버 운영 환경에 적합한 알고리즘을 채택하는데 활용 가능하며, 결과적으로 안정적이고 효율적인 서버 운영에 기여할 수 있을 것으로 사료된다.

Survey on DGA Botnet Domain Detection and Family Classification (DGA 봇넷 도메인 감지 및 패밀리 분류 연구 동향)

  • Jungmin Lee;Minjae Kang;Yeonjoon Lee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.543-546
    • /
    • 2023
  • 봇넷은 지속적으로 사이버 범죄에 이용되고 있으며 네트워크 환경에 큰 위협이 되고 있다. 기존에는 봇들이 C&C 서버와 통신하는 것을 방지하기 위해 블랙리스트를 기반으로 DNS 서버에서 봇넷 도메인을 탐지하는 방식을 주로 사용하였다. 그러나 도메인 생성 알고리즘(DGA)을 이용하는 봇넷이 증가하면서 기존에 사용하던 블랙리스트 기반의 도메인 차단 방식으로는 더 이상 봇넷 도메인을 효율적으로 차단하기 어려워졌다. 이에 따라 봇넷 도메인 생성 알고리즘을 통해 생성되는 도메인의 특성을 분석하고 이를 토대로 봇넷 도메인을 식별하고 차단하고자 하는 시도가 계속되고 있다. 특히 연속적인 데이터 처리에 주로 사용되는 딥러닝 알고리즘을 이용하여 봇넷 도메인의 특징을 효과적으로 추출하고 정확도가 높은 탐지 모델을 구축하고자 하는 연구가 주를 이루고 있으며, 탐지뿐만 아니라 봇넷 그룹(Family) 분류까지 연구가 확장되고 있다. 이에 본 논문에서는 봇넷 도메인 생성 알고리즘에 의해 생성되는 봇넷 도메인을 식별 및 분류하기 위해 딥러닝 기술을 적용한 최근 연구 동향을 조사하고 앞으로의 연구 방향성을 논의하고자 한다.

인공신경망 알고리즘을 통한 사물인터넷 위협 탐지 기술 연구

  • Oh, Sungtaek;Go, Woong;Kim, Mijoo;Lee, Jaehyuk;Kim, Hong-Geun;Park, SoonTai
    • Review of KIISC
    • /
    • v.29 no.6
    • /
    • pp.59-66
    • /
    • 2019
  • 사물인터넷 환경은 무수히 많은 이기종의 기기가 연결되는 초연결 네트워크 구성을 갖는 특성이 있다. 본 논문에서는 이러한 특성을 갖는 사물인터넷 환경에 적합한 보안 기술로 네트워크를 통해 침입하는 위협의 효율적인 탐지 기술을 제안한다. 사물인터넷 환경에서의 대표적인 위협 행위를 분석하고 관련하여 공격 데이터를 수집하고 이를 토대로 특성 연구를 진행하였다. 이를 기반으로 인공신경망 기반의 오토인코더 알고리즘을 활용하여 심층학습 탐지 모델을 구축하였다. 본 논문에서 제안하는 탐지 모델은 비지도 학습 방식의 오토인코더를 지도학습 기반의 분류기로 확장하여 사물인터넷 환경에서의 대표적인 위협 유형을 식별할 수 있었다. 본 논문은 1. 서론을 통해 현재 사물인터넷 환경과 보안 기술 연구 동향을 소개하고 2. 관련연구를 통하여 머신러닝 기술과 위협 탐지 기술에 대해 소개한다. 3. 제안기술에서는 본 논문에서 제안하는 인공신경망 알고리즘 기반의 사물인터넷 위협 탐지 기술에 대해 설명하고, 4. 향후연구계획을 통해 추후 활용 방안 및 고도화에 대한 내용을 작성하였다. 마지막으로 5. 결론을 통하여 제안기술의 평가와 소회에 대해 설명하였다.