DOI QR코드

DOI QR Code

Survey on DGA Botnet Domain Detection and Family Classification

DGA 봇넷 도메인 감지 및 패밀리 분류 연구 동향

  • Jungmin Lee (Major in Bio Artificial Intelligence, Dept. of Computer Science & Engineering, Hanyang University) ;
  • Minjae Kang (Dept. of Military Information Engineering, Hanyang University ERICA) ;
  • Yeonjoon Lee (Major in Bio Artificial Intelligence, Dept. of Computer Science & Engineering, Hanyang University)
  • 이정민 (한양대학교 컴퓨터공학과 바이오인공지능융합전공) ;
  • 강민재 (한양대학교 ERICA 국방정보공학과) ;
  • 이연준 (한양대학교 컴퓨터공학과 바이오인공지능융합전공)
  • Published : 2023.11.02

Abstract

봇넷은 지속적으로 사이버 범죄에 이용되고 있으며 네트워크 환경에 큰 위협이 되고 있다. 기존에는 봇들이 C&C 서버와 통신하는 것을 방지하기 위해 블랙리스트를 기반으로 DNS 서버에서 봇넷 도메인을 탐지하는 방식을 주로 사용하였다. 그러나 도메인 생성 알고리즘(DGA)을 이용하는 봇넷이 증가하면서 기존에 사용하던 블랙리스트 기반의 도메인 차단 방식으로는 더 이상 봇넷 도메인을 효율적으로 차단하기 어려워졌다. 이에 따라 봇넷 도메인 생성 알고리즘을 통해 생성되는 도메인의 특성을 분석하고 이를 토대로 봇넷 도메인을 식별하고 차단하고자 하는 시도가 계속되고 있다. 특히 연속적인 데이터 처리에 주로 사용되는 딥러닝 알고리즘을 이용하여 봇넷 도메인의 특징을 효과적으로 추출하고 정확도가 높은 탐지 모델을 구축하고자 하는 연구가 주를 이루고 있으며, 탐지뿐만 아니라 봇넷 그룹(Family) 분류까지 연구가 확장되고 있다. 이에 본 논문에서는 봇넷 도메인 생성 알고리즘에 의해 생성되는 봇넷 도메인을 식별 및 분류하기 위해 딥러닝 기술을 적용한 최근 연구 동향을 조사하고 앞으로의 연구 방향성을 논의하고자 한다.

Keywords

Acknowledgement

이 논문은 2022년도 정부(방위사업청)의 재원으로 국방기술진흥연구소의 지원을 받아 수행된 연구임(No. KRIT-CT-22-021, 우주공간 신호정보특화연구실)