• Title/Summary/Keyword: 탐지규칙

Search Result 241, Processing Time 0.026 seconds

A Design of RSIDS using Rough Set Theory and Support Vector Machine Algorithm (Rough Set Theory와 Support Vector Machine 알고리즘을 이용한 RSIDS 설계)

  • Lee, Byung-Kwan;Jeong, Eun-Hee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.12
    • /
    • pp.179-185
    • /
    • 2012
  • This paper proposes a design of RSIDS(RST and SVM based Intrusion Detection System) using RST(Rough Set Theory) and SVM(Support Vector Machine) algorithm. The RSIDS consists of PrePro(PreProcessing) module, RRG(RST based Rule Generation) module, and SAD(SVM based Attack Detection) module. The PrePro module changes the collected information to the data format of RSIDS. The RRG module analyzes attack data, generates the rules of attacks, extracts attack information from the massive data by using these rules, and transfers the extracted attack information to the SAD module. The SAD module detects the attacks by using it, which the SAD module notifies to a manager. Therefore, compared to the existing SVM, the RSIDS improved average ADR(Attack Detection Ratio) from 77.71% to 85.28%, and reduced average FPR(False Positive ratio) from 13.25% to 9.87%. Thus, the RSIDS is estimated to have been improved, compared to the existing SVM.

Anomaly Intrusion Detection based on Association Rule Mining in a Database System (데이터베이스 시스템에서 연관 규칙 탐사 기법을 이용한 비정상 행위 탐지)

  • Park, Jeong-Ho;Oh, Sang-Hyun;Lee, Won-Suk
    • The KIPS Transactions:PartC
    • /
    • v.9C no.6
    • /
    • pp.831-840
    • /
    • 2002
  • Due to the advance of computer and communication technology, intrusions or crimes using a computer have been increased rapidly while tremendous information has been provided to users conveniently Specially, for the security of a database which stores important information such as the private information of a customer or the secret information of a company, several basic suity methods of a database management system itself or conventional misuse detection methods have been used. However, a problem caused by abusing the authority of an internal user such as the drain of secret information is more serious than the breakdown of a system by an external intruder. Therefore, in order to maintain the sorority of a database effectively, an anomaly defection technique is necessary. This paper proposes a method that generates the normal behavior profile of a user from the database log of the user based on an association mining method. For this purpose, the Information of a database log is structured by a semantically organized pattern tree. Consequently, an online transaction of a user is compared with the profile of the user, so that any anomaly can be effectively detected.

Traffic Attributes Correlation Mechanism based on Self-Organizing Maps for Real-Time Intrusion Detection (실시간 침입탐지를 위한 자기 조직화 지도(SOM)기반 트래픽 속성 상관관계 메커니즘)

  • Hwang, Kyoung-Ae;Oh, Ha-Young;Lim, Ji-Young;Chae, Ki-Joon;Nah, Jung-Chan
    • The KIPS Transactions:PartC
    • /
    • v.12C no.5 s.101
    • /
    • pp.649-658
    • /
    • 2005
  • Since the Network based attack Is extensive in the real state of damage, It is very important to detect intrusion quickly at the beginning. But the intrusion detection using supervised learning needs either the preprocessing enormous data or the manager's analysis. Also it has two difficulties to detect abnormal traffic that the manager's analysis might be incorrect and would miss the real time detection. In this paper, we propose a traffic attributes correlation analysis mechanism based on self-organizing maps(SOM) for the real-time intrusion detection. The proposed mechanism has three steps. First, with unsupervised learning build a map cluster composed of similar traffic. Second, label each map cluster to divide the map into normal traffic and abnormal traffic. In this step there is a rule which is created through the correlation analysis with SOM. At last, the mechanism would the process real-time detecting and updating gradually. During a lot of experiments the proposed mechanism has good performance in real-time intrusion to combine of unsupervised learning and supervised learning than that of supervised learning.

An Interpretable Log Anomaly System Using Bayesian Probability and Closed Sequence Pattern Mining (베이지안 확률 및 폐쇄 순차패턴 마이닝 방식을 이용한 설명가능한 로그 이상탐지 시스템)

  • Yun, Jiyoung;Shin, Gun-Yoon;Kim, Dong-Wook;Kim, Sang-Soo;Han, Myung-Mook
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.77-87
    • /
    • 2021
  • With the development of the Internet and personal computers, various and complex attacks begin to emerge. As the attacks become more complex, signature-based detection become difficult. It leads to the research on behavior-based log anomaly detection. Recent work utilizes deep learning to learn the order and it shows good performance. Despite its good performance, it does not provide any explanation for prediction. The lack of explanation can occur difficulty of finding contamination of data or the vulnerability of the model itself. As a result, the users lose their reliability of the model. To address this problem, this work proposes an explainable log anomaly detection system. In this study, log parsing is the first to proceed. Afterward, sequential rules are extracted by Bayesian posterior probability. As a result, the "If condition then results, post-probability" type rule set is extracted. If the sample is matched to the ruleset, it is normal, otherwise, it is an anomaly. We utilize HDFS datasets for the experiment, resulting in F1score 92.7% in test dataset.

A Fuzzy Rule-based System for Automatic Traffic Accident Detection based on Multiple Cameras (다중 카메라 기반 교통사고 자동탐지를 위한 퍼지 규칙기반 시스템)

  • Kim, Yong-Joong;Cho, Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.360-362
    • /
    • 2012
  • 교통수단의 발달과 생활수준의 향상으로 도로에 차량이 많이 늘어나고 교통사고가 많이 발생함에 따라, 교통사고 자동인식 시스템에 관한 연구가 많이 진행되고 있다. 본 논문에서는 카메라의 위치에 따라 두 객체의 관심영역 사이의 겹침을 해석하는 것이 달라져 규칙이 변하는 것을 방지하고, 사람의 추론과정과 같이 교통사고를 퍼지 규칙으로 모델링하여 획득한 데이터가 부정확할 경우에 발생하는 잘못된 추론을 보정하기 위한 퍼지 규칙기반 시스템을 제안한다. 카이스트 삼거리에서 촬영한 9개의 사고 시나리오 데이터에 대해 실험하여 DR 87.34%, CDR 89.13%, FAR 10.75%의 결과를 얻었고, 이를 기존의 규칙기반 시스템, 규칙-확률 시스템과 비교하였다.

HTTP Traffic Based Anomaly Detection System (HTTP 트래픽 기반의 비정상행위 탐지 시스템)

  • Kim Hyo-Nam;Jang Sung-Min;Won Yu-Hun
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06c
    • /
    • pp.313-315
    • /
    • 2006
  • 최근 인터넷 공격은 웹 서비스 환경에서 다양한 공격 유형들이 인터넷상에서 나타나고 있는 실정이다. 특히 인터넷 웜이나 기타 알려지지 않은 공격이 대중을 이루고 있어 기존의 정보 보호 기술로는 한계에 다다르고 있으며 이미 알려진 공격을 탐지하는 오용탐지 기술로는 적절하게 대응하기 어려워진 상태이다. 또한, 웹 서비스 이용이 확대되고 사용자 요구에 맞게 변화하면서 인터넷상의 노출된 웹 서비스는 공격자들에게 있어 주공격 대상이 되고 있다. 본 논문에서는 웹 기반의 트래픽 유형을 분석하고 각 유형에 따른 이상 징후를 파악할 수 있는 비정상 탐지 모델을 정의하여 정상 트래픽 모델과 비교함으로써 현재 트래픽의 이상 정도를 평가하고 탐지 및 규칙생성, 추가하는 HTTP 트래픽 기반의 비정상행위 탐지 시스템을 설계하고 구현하였다.

  • PDF

통계적 척도 선택 방법에 따른 네트워크 침입 분류의 성능 비교

  • Mun, Gil-Jong;Kim, Yong-Min;Noh, Bong-Nam
    • Review of KIISC
    • /
    • v.19 no.2
    • /
    • pp.16-25
    • /
    • 2009
  • 네트워크 기술의 발달에 따른 서비스의 증가는 네트워크 트래픽과 함께 취약점도 증대하여 이를 악용하는 행위도 늘어나고 있다. 따라서 네트워크 침입탐지 시스템은 증가하는 트래픽의 양을 처리할 수 있어야 하며, 악의적인 행동을 효과적으로 탐지 할 수 있어야 한다. 증가하는 트래픽을 효과적으로 처리하고 탐지의 정확성을 높이기 위해 처리 데이터를 감소시키는 기술이 요구된다. 이러한 방법들은 크게 데이터 필터링, 척도 선택, 데이터 클러스터링의 영역으로 구분되며, 본 논문에서는 척도 선택의 방법으로 데이터 처리의 감소 및 효과적 침입탐지를 수행할 수 있음을 보이고자 한다. 실험 데이터는 KDDCUP 99 데이터 셋을 이용하였으며, 통계적 척도선택의 방법으로 분류율, 오탐율, 거리값, 규칙, 선택된 척도 등을 제시함으로써 침입 탐지 시 데이터 처리량이 감소하였고, 분류율은 증가, 오탐율은 감소하여 침입 탐지 정확성이 높아짐을 알 수 있었다. 또한 본 논문에서 제시한 방법이 다른 관련연구에서 제시한 선택 척도보다 높은 정확성을 보임으로써 보다 유용함을 증명할 수 있었다.

A Study of Stable Intrusion Detection for MANET (MANET에서 안정된 침입탐지에 관한 연구)

  • Yang, Hwan-Seok;Yang, Jeong-Mo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.1
    • /
    • pp.93-98
    • /
    • 2012
  • MANET composed of only moving nodes is concerned to core technology to construct ubiquitous computing environment. Also, it is a lack of security because of no middle infrastructure. So, it is necessary to intrusion detection system which can track malicious attack. In this study, cluster was used to stable intrusion detection, and rule about various attacks was defined to detect accurately attack that seems like network problem. Proposed method through experience was confirmed that stable detection rate was showed although number of nodes increase.

Automatic Generation of Snort Content Rule for Network Traffic Analysis (네트워크 트래픽 분석을 위한 Snort Content 규칙 자동 생성)

  • Shim, Kyu-Seok;Yoon, Sung-Ho;Lee, Su-Kang;Kim, Sung-Min;Jung, Woo-Suk;Kim, Myung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.666-677
    • /
    • 2015
  • The importance of application traffic analysis for efficient network management has been emphasized continuously. Snort is a popular traffic analysis system which detects traffic matched to pre-defined signatures and perform various actions based on the rules. However, it is very difficult to get highly accurate signatures to meet various analysis purpose because it is very tedious and time-consuming work to search the entire traffic data manually or semi-automatically. In this paper, we propose a novel method to generate signatures in a fully automatic manner in the form of sort rule from raw packet data captured from network link or end-host. We use a sequence pattern algorithm to generate common substring satisfying the minimum support from traffic flow data. Also, we extract the location and header information of the signature which are the components of snort content rule. When we analyzed the proposed method to several application traffic data, the generated rule could detect more than 97 percentage of the traffic data.

Implementation of abnormal behavior detection Algorithm and Optimizing the performance of Algorithm (비정상행위 탐지 알고리즘 구현 및 성능 최적화 방안)

  • Shin, Dae-Cheol;Kim, Hong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4553-4562
    • /
    • 2010
  • With developing networks, information security is going to be important and therefore lots of intrusion detection system has been developed. Intrusion detection system has abilities to detect abnormal behavior and unknown intrusions also it can detect intrusions by using patterns studied from various penetration methods. Various algorithms are studying now such as the statistical method for detecting abnormal behavior, extracting abnormal behavior, and developing patterns that can be expected. Etc. This study using clustering of data mining and association rule analyzes detecting areas based on two models and helps design detection system which detecting abnormal behavior, unknown attack, misuse attack in a large network.