• Title/Summary/Keyword: 탐구실험 수업

Search Result 273, Processing Time 0.022 seconds

The Effect of Peer Review Activities on Qualitative Changes in Lab Reports (동료 검토 활동이 실험보고서의 질적 변화에 미치는 영향)

  • Park, Sung-Hye;Kang, Seong-Joo;Jang, Eun-Kyung
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.8
    • /
    • pp.988-1001
    • /
    • 2010
  • The purpose of this research was to investigate how the peer review activity of lab report in the problem-solving experiment effected on the description ability and the quality improvement. The students who were taking the general chemistry experiment course were the subjects for this study. They finished lab reports and received peer review from their peers more than two times. The students who got feedback answered on peer review, revised their reports, and subsequently, completed final reports. The result showed that peer review affected the qualitative improvement of the lab report, specially in the process of 'designing experiment' and 'drawing conclusion and evaluation'. Students could organize their thoughts through writing lab reports. During this process, peer review activities provided the opportunity of self-examination and the way for viewing as objective standpoint. Moreover, the activities established communication fields for exchanging mutual opinions and learning.

Research on Pre-service Teachers' Perception in Experiments of Earth's Rotation' by School Level (학교 급별에 적합한 지구의 자전 실험에 대한 예비교사의 인식 연구)

  • Han, Je-jun;Chae, Dong-hyun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.12 no.3
    • /
    • pp.252-260
    • /
    • 2019
  • The purpose of this study is to assist school science class by investigating effective Earth's rotation experiments of districts by school level. The researcher investigated or developed nine experiments for learning Earth's rotation, and conducted and discussed these experiments with 26 elementary school teachers. Each teachers chose an effective Earth's rotation experiment for the district and wrote the reason. As a result, elementary school teachers chose the experiment that is easy to prepare and to do. And elementary school students are interested in the experiments by conducting them on their own. Middle and high school teachers chose more difficult experiments that could be connected with other concepts. University teachers chose effective experiments based on application of knowledge, active exploration, computer literacy, and difficulty.

Qualitative Inquiry on Ways to Improve Science Instruction and Assessment for Raising High School Students' Positive Experiences on Science (고등학생의 과학긍정경험 향상을 위한 교수학습 및 평가 개선 방안에 대한 질적 탐구)

  • Kwak, Youngsun;Shin, Youngjoon;Kang, Hunsik;Lee, Sunghee;Lee, Il;Lee, Soo-Young;Ha, Jihoon
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.3
    • /
    • pp.337-346
    • /
    • 2020
  • In this study, we investigated the characteristics of students participating in Science Core high schools classes and their relevance to Positive Experiences on Science (hereinafter, PES), and factors causing PES, presented by the students of Science Core high schools. A total of 20 students and five teachers in four regions across the country participated in the in-depth interview, which were conducted with the focus group of students first, and then in-depth interviews with teachers. Based on the interview results, we explored teaching and learning experiences helpful to the PES, assessment experiences resulting in the PES, and ways to support Science Core high schools to enhance their PES. Students and teachers of Science Core high schools argued that students' participation will increase only if they engage in classes while drawing attention within the range that students can understand, students' PES such as scientific interest can be improved through experiments in which students choose topics or design their own exploration process, science competencies such as science problem solving ability and scientific thinking ability should be developed through exploratory experiment activities that fit the nature of science, etc. In addition, regarding ways to improve and support Science Core high schools to enhance PES, securing science class hours, restructuring the contents of science elective courses, and necessity of maintaining Science Core high schools are suggested. Based on the research results of science high school students' PES, ways to improve the PES of general high school students are discussed.

Development and Application of the Sea Wave Experimental Module for the Gifted Students in High School Earth Science (고등학교 과학영재를 위한 지구과학 영역 해파 실험모듈 개발 및 활용)

  • Lee, Heui-Taek;Shim, Kew-Cheol;Kim, Yeo-Sang
    • Journal of Gifted/Talented Education
    • /
    • v.18 no.1
    • /
    • pp.139-165
    • /
    • 2008
  • This paper is focused on the development of sea wave experimental module for the science gifted students and the potential of its application in high school earth science. Sea wave experimental module for the gifted was characteristics by five phases: Engagement, Exploration, Explanation, Elaboration, and Expansion. Subjects were 16 gifted students, who were 10th graders and have been taught in the adjacent Education Institute for the gifted of Education Districts, Daejeon Metropolitan Office of Education The changes of inquiry ability and knowledge achievement were analyzed according to analysis of experimental report and pre-test and post-test. Experimental module for the gifted was very effective on inquiry skills as follows: control of variables, experimental designing, and selecting tools of experimental process. And also it was positively effective on achievement. The result of this study suggested that experimental module for the science gifted should be very meaningfully to improve scientific ability of them, and the development and application of experimental module for the science gifted be needed for them.

A Study of Recognition for the Gifted Science Education Programs of Middle School Students being educated at Local Centers for the Gifted (지역 교육청 영재교육원 중학생들의 과학 영재 교육 프로그램에 대한 인식 조사)

  • Kim, Yun-Hwa;Kim, Hyun-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.30 no.2
    • /
    • pp.192-205
    • /
    • 2010
  • We have investigated the recognition for the gifted science education program of middle school students being educated at the local center for the gifted. We developed a questionnaire that includes items for contents of the program, learning environments, participation attitude, effects of the program and improvements, and consists of it5-point Likert items and related descriptive items. 161 students at the local centers for the gifted responded to the questionnaire. The total score was 3.70 on a 5-point Likert scale. The score of effects of the program was highest, learning environments was the lowest. Most of the students referred that the participation of the programs help their schoolwork because of schoolwork preparations & review, learning the process of the solving problem and principle. On the contrary, difficult contents and long lesson hours interrupted their schoolwork. Students recognized that the programs are mainly composed of students' self-activities and the role of teachers is subsidiary. The programs have a good effect on them to increase interest in science and creative thinking. It is necessary that the program be improved in lesson hours, contents of the program, school facilities, and full service.

The Effect of the Use of Concept Mapping on Science Achievement and the Scientific Attitude in Ocean Units of Earth Science (해양단원 개념도 활용 수업이 과학성취도 및 태도에 미치는 효과)

  • Han, Jung-Hwa;Kim, Kwang-Hui;Park, Soo-Kyong
    • Journal of the Korean earth science society
    • /
    • v.23 no.6
    • /
    • pp.461-473
    • /
    • 2002
  • Concept mapping is a device for representing the conceptual structure of a subject discipline in a two dimensional form which is analogous to a road map. In the teaching and learning of earth science, each concept depends on its relationships to many others for meaning. Using concept mapping in teaching helps teachers and students to be more aware of the key concepts and relationships among them. The purpose of this study is to investigate the effect of the use of concept mapping on science achievement and the scientific attitude in ocean units of earth science. The results of this study are as follows; first, the science achievement of a group of concept mapping teaching is significantly higher than that of the group of traditional teaching. Also, when the achievement levels are compared among different cognitive ability groups, the effect is more significant in mid or lower level student groups than in high level groups. The use of concept mapping is more effective when the concepts have a distinct concept hierarchy. Second, the scores of the test of ‘attitude toward scientific inquiry’ and ‘application of scientific attitude’ of the group of concept mapping teaching are significantly higher than those of the group of traditional teaching, whereas the scores of the test of ‘interest in science learning’ of concept mapping teaching is not different from those of group of traditional teaching. Third, the survey on the use of concept mapping shows a positive response across the tested groups. The use of concept mapping is more beneficial in fostering the comprehension of the topic. A concept map of student's own construction facilitates the assessment of learning, thus promising the usefulness of concept mapping as a means of evaluation. In regard to retention aspect, concept mapping is considered to be more effective in confirming and remembering the topic, while less effective in the aspects of activity and interest. In conclusion, the use of concept maps makes learning an active meaningful process and improves student's academic achievement and scientific attitude. If the concept mapping is more effectively as an active teaching strategy, more meaningful learning will be attained.

The Study on the Class Difficulty of Elementary Pre-service Teachers' Seasonal Change Unit (초등예비교사의 계절변화 단원에 대한 수업곤란도 연구)

  • Soon-shik Kim
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.16 no.3
    • /
    • pp.340-350
    • /
    • 2023
  • This study analyzed the difficulty level of class on the seasonal change unit for 84 students at a university of education. The conclusions of this study are as follows. First, if we first present the four topics that make up the seasonal changes in elementary science, the subjects that have the greatest difficulty in teaching for prospective elementary school teachers are 'Why do seasonal changes occur?' (Teaching difficulty level 4.05), 'The sun changes depending on the season' What is the difference between the southern altitude and the length of day and night?' (difficulty level of class, 3.12), 'What is the relationship between the altitude of the sun, length of shadow, and temperature during the day?' (difficulty level of class, 2.85), 'How does the temperature change depending on the season?' (class difficulty level 2.80). As a result, in the elementary science season change unit, the class on the four topics 'Why do seasons change?', which is classified as a class topic that requires the concept of spatial perception, showed a higher level of class difficulty than other units. Second, in the seasonal change unit, various factors of class difficulty appeared depending on the class topic. When pre-service elementary school teachers look at the factors that make class difficult when teaching a lesson on seasonal changes in order of frequency, 42 (50%) said 'Experimental instruction for comparing the altitude of solar masculine according to the tilt of the axis of rotation', followed by 'Solar masculine'. 38 people (45%) answered 'Difficulty in explaining mid-high altitude and the length of day and night', 27 people (32%) answered 'Difficulty in explaining the concept of mid-high altitude', and 24 people (32%) answered 'Difficulty in explaining seasonal changes in the sun's position.' 29%), 20 people (24%) said 'Explain the reasonable reason why the height of the light should be adjusted when measuring the solar altitude', and 16 people (19%) said 'It is difficult to explain the reason for the discrepancy between the solar altitude and the maximum temperature'. ), 'difficulties in measuring sand (ground) temperature' were mentioned by 12 people (14%). Third, when analyzing the factors of class difficulty, there were more curriculum factors than teacher factors. In this context, the exploratory activities on 'Why do seasonal changes occur?', the fourth topic of the seasonal change unit in which elementary school pre-service teachers showed the greatest difficulty in teaching, need improvement in terms of the curriculum.

The Development and Application of Informal Gifted and Talented Education program utilizing Local Resources in Yeongheung Island (영흥도 지역자원을 활용한 학교 밖 영재 프로그램 개발 및 적용 효과)

  • Ock, Seong-Hyun;Choi, SunYoung
    • Journal of Science Education
    • /
    • v.38 no.2
    • /
    • pp.356-375
    • /
    • 2014
  • The purpose of this study was to develop the informal education based elementary gifted education program utilizing local resources in Yeongheung island for enhancing the creative problem solving, science process skills, scientific attitudes. This program was totally consisted 36 lessons and 3 part. For this purpose, 7 weeks' informal gifted education program utilizing local resources was treated to a class students who were 5th graders of elementary school in Yeongheung island. The results of this study were as follows : First, the change of science creative problem solving ability in the gifted class was found statistically meaningful difference. Second, science process skills were showed statistically meaningful difference. Third, scientific attitudes were not showed statistically meaningful difference. Fourth, the student responses about effectiveness of this programs were generally positive. Therefore, the gifted education programs showed meaningful results. Based on the results of this study, a number of studies to overcome the limitations will be needed.

  • PDF

The Aspects of Epistemic Cognition Formed in Elementary Students' Scientific Modeling: An Examination through the Apt-AIR Framework (Apt-AIR 기본틀로 본 초등학생의 과학적 모델링 수업에서 지식구성의 인지과정 실행 양상)

  • Seoyeon Kim;Seungho Maeng
    • Journal of The Korean Association For Science Education
    • /
    • v.44 no.4
    • /
    • pp.325-341
    • /
    • 2024
  • This study examined how specific aspects of epistemic cognition are developed in elementary students during modeling activities, using the Apt-AIR framework. The study focused on a class unit titled 'Shall We Find Out What the Landscape of a Riverside Looks Like?' which is part of the land chapter in the third-grade Korean elementary science curriculum. Ambitious Science Teaching (AST) was applied as a teaching strategy to enhance students' model construction. Seven science classes were conducted in line with the core practices of AST, with 29 elementary school students participating in the study. The classes were organized into four stages: initial model composition, inquiry activity, group model composition-sharing, and final model construction. The class activities at each stage were analyzed using both the AIR model, i.e., epistemic aim and value (A), epistemic ideals (I), and reliable epistemic processes (R), and the multi-faceted framework for epistemic thinking from the Apt-AIR framework. The results of the study revealed that in science classes emphasizing modeling activities based on the core practices of AST, the elementary students progressively developed more sophisticated explanatory models that included causal relationships explaining the topographic differences between the upstream and downstream sections of a river. This result was due to their engagement in constructing initial models to describe phenomena, supplementing the initial models using data collected in the model experiment, and participating in discussions to share and evaluate group models. Additionally, from the perspective of the Apt-AIR framework, the aspects of epistemic cognition demonstrated by the elementary students in their modeling activities were appropriate for engaging with cognitive processes related to epistemic aims and values, epistemic ideals, and reliable processes. The other four aspects of the Apt-AIR framework, however, were not performed as effectively. In particular, the application of reliable epistemic processes for knowledge construction required more improvement.

An Analysis of the Characteristics of Teachers' Adaptive Practices in Science Classes (과학 수업에서 교사의 적응적 실행의 특징 분석)

  • Heekyong Kim;Bongwoo Lee
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.4
    • /
    • pp.403-414
    • /
    • 2023
  • In this study, we examined the adaptive practices of science teachers in their classrooms and their perspectives on the distinguishing features of these practices within science subjects. Our analysis comprised 339 cases from 128 middle and high school science teachers nationwide, and 199 cases on the characteristics of adaptive practices in science disciplines. The primary findings were as follows: First, the most significant characteristic of adaptive practice in science disciplines pertained to experimental procedures. Within the 'suggestion of additional materials/activities' category, the most frequently cited adaptive practice, teachers incorporated demonstrations to either facilitate student comprehension or enhance motivation. Additionally, 'experimental equipment manipulation or presentation of inquiry skills' emerged as the second most common adaptive practice related to experiments. Notably, over 50% of teacher responses regarding the characteristics of adaptive practices in science pertained to experiment guidance. Second, many adaptive practices involving difficulties experienced by students in learning situations were presented, particularly in areas such as numeracy and literacy. Many cases were related to the basic ability of mathematics used as a tool in science learning and understanding scientific terms in Chinese characters. Third, beyond 'experiment guidance', the characteristic adaptive practices of science subjects were related to 'connections between scientific theory and the real world', 'misconception guidance in science', 'cultivation of scientific thinking', and 'convergence approaches'. Fourth, the cases of adaptive practice presented by the science teachers differed by school level and major; therefore, it is necessary to consider school level or major in future research related to adaptive practice. Fifth, most of the adaptive action items with a small number of cases were adaptive actions executed from a macroscopic perspective, so it is necessary to pay attention to related professionalism. Finally, based on the results of this study, the implications for science education were discussed.