• Title/Summary/Keyword: 탈질촉매

Search Result 105, Processing Time 0.021 seconds

A Study for SCR Catalyst Reduction in Fast SCR Using Oxidation Catalyst (산화촉매를 이용한 Fast SCR에서의 SCR 촉매 저감 연구)

  • Lee, Jae Ok;Lee, Dae Hoon;Song, Young-Hoon;Oh, Dong-Kyu;Seo, Jung-Wook
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.333-336
    • /
    • 2013
  • Experimental investigation to estimate the feasibility of fast selective catalytic reduction (SCR) or oxidation catalyst combined ammonia SCR system to abate NOx in low temperature condition ($150{\sim}250^{\circ}C$) is reported. Because the conversion of NO to $NO_2$ is pre-requisite of the fast SCR process, the effect of the amount of oxidation catalyst to NO conversion to $NO_2$ was tested. 37, 45 and 51% of conversion rates were obtained for the OCV of 563000, 375000 and 281000 h, respectively. $De-NO_x$ performance in the case of $NO_2/NO_x$ ratio of 45% showed the best result in all tested temperature conditions. Comparison of the fast SCR and standard SCR with the condition of $NO_2/NO_x$ ratio of 45%, $200{\sim}250^{\circ}C$ and space velocity of 10000~30000 h showed that the fast SCR does not show much difference according to the variance of space velocity. Also it was shown that using the fast SCR, the volume of SCR catalyst can be reduced less than half of the standard SCR condition by increasing space velocity without the loss of $De-NO_x$ performance.

Formation of N2O in NH3-SCR DeNOxing Reaction with V2O5/TiO2-Based Catalysts for Fossil Fuels-Fired Power Stations (화력발전소용 V2O5/TiO2계 촉매상에서 NH3-SCR 탈질반응으로부터의 N2O 생성)

  • Kim, Moon Hyeon
    • Korean Chemical Engineering Research
    • /
    • v.51 no.2
    • /
    • pp.163-170
    • /
    • 2013
  • Selective catalytic reduction of $NO_x$ by $NH_3$ ($NH_3$-SCR) over $V_2O_5/TiO_2$-based catalysts is recently reported to be an anthropogenic emitter of $N_2O$ that is a global warming gas with a global warming potential of 310. Therefore, this review will get a touch on significance of some parameters regarding $N_2O$ formation in the $deNO_xing$ reaction for fossil fuels-fired power plants applications. The $N_2O$ production in $NH_3$-SCR reaction with such catalysts occurs via side reactions between $NO_x$ and $NH_3$ in addition to $NH_3$ oxidation, and the extent of these undesired reactions depends strongly on the loadings of $V_2O_5$ as a primary active component and the promoter as a secondary one ($WO_3$ and $MoO_3$) in the SCR catalysts, the feed and operating variables such as reaction temperature, $NO_2/NO_x$ ratio, oxygen concentration, gas hourly space velocity, water content and thermal excursion, and the physical and chemical histories of the catalysts on site. Although all these parameters are associated with the $N_2O$ formation in $deNO_xing$ reaction, details of some of them have been discussed and a better way of suppressing the $N_2O$ production in commercial SCR plants has been proposed.

Enhancement of $SO_2$ Sorption of $CuO/{\gamma}-{A1_2}$O$_3$ Sorbent by Additives (첨가제에 의한 $CuO/{\gamma}-A1$$_2$O$_3$ 흡수제의 $SO_2$ 제거능력의 향상)

  • 정상문;유경선;김상돈
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.11a
    • /
    • pp.38-41
    • /
    • 1995
  • 화석연료의 연소에 의하여 방출되는 SO$_2$ 와 NO 에 의한 대기오염의 심각성은 이미 잘 알려져 있으며 그에 따른 배출규제 또한 강화되고 있다. 최근에는 탈황과 탈질을 동시에 처리하는 동시 탈황탈질 공정의 연구가 진행되고 있다. 동시제거 공정은 주로 흡수제/촉매를 토대로 개발되고 있으며 산화구리가 담지된 알루미나 (CuO/${\gamma}$-A1$_2$O$_3$) 흡수제/촉매는 SOx, NOx 동시제거에 효과적인 물질로 알려져 있다. 담지된 CuO 와 담체 A1$_2$O$_3$는 SO$_2$$O_2$ 존재하에 반응하여 CuSO$_4$$Al_2$(SO$_4$)$_3$ 가되며 [1] CuSO$_4$ 와 미반응된 CuO 는 NO 제거를 위한 촉매로서의 역할을 하게 된다 [2].

  • PDF

Low-Temperature SCR of NO over Physical Mixture of MnO2 and Metal-Loaded Activated Carbon (MnO2와와 금속담지활성탄의 물리적 혼합물을 이용한 NO의 저온 선택적 촉매 환원 반응)

  • Choi, Jong Cheol;Cho, Chul-Hoon;Jeong, Kwang-Eun;Jeon, Jong-Ki;Yim, Jin-Hyeong;Park, Young-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.92-97
    • /
    • 2008
  • Selective catalytic reduction (SCR) of NO with ammonia was carried out over the physical mixture of $MnO_2$ and K or Cu-loaded activated carbons (AC) at low temperature. Introduction of oxygen affected positively the reduction of NO. Metal-impregnated AC showed significantly enhanced catalytic activity. Without water, the mixed catalyst of $MnO_2$ and K-loaded AC exhibited the best activity in the reduction of NO at $120^{\circ}C$. On the contrary, the activities of all the catalysts were significantly diminished in the presence of water. The mixed catalyst of $MnO_2$ and Cu-loaded AC treated with nitric acid and heat (1 : 1, w/w) exhibited the better activity for the reduction of NO than each single catalyst in presence of water.

Strength and conversion characteristics of DeNOx catalysts with the addition of dispersion agent (분산제 첨가에 따른 탈질촉매의 강도세기 및 전환특성)

  • Lee, Hyun Hee;Park, Kwang Hee;Cha, Wang Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6575-6580
    • /
    • 2013
  • Various modified SCR catalysts were prepared and tested to improve the strength of catalysts for use under severe conditions. The SCR catalysts were modified with a binder and dispersion agent, and tested at the fixed bed reactor. FT-IR and $H_2$-TPR were used to analyze the degree of hydrogen use and ammonia adsorption by the modified catalysts. In the case of the SCR catalysts coated with 2.3g of the binder, 4.7g of ethanol, and 0.1g of dispersion agent, the strength of catalyst was increased by approximately 12%. On the other hand, despite the enhancement of strength, the activities of the SCR catalysts were decreased by 2-10%. When the mixed solution composed of binder, dispersion agent and $SiO_2$ solution was precipitated on the catalyst, the $NO_x$ conversion of the catalyst was decreased slightly. The Bronsted acid site and Lewis acid site worked as the activators for the SCR reaction, and were decreased by $SiO_2$.

Reaction Characteristics of SOx/NOx Removal Using CuO/γ-Al2O3 Sorbent/Catalyst (CuO/γ-Al2O3 흡수제/촉매를 이용한 SOx/NOx 제거 반응특성)

  • Yoo, Kyung Seun;Kim, Sang Done
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.671-678
    • /
    • 2000
  • Reaction characteristics of simultaneous removal of SOx and NOx have been investigated in a thermogravimetric analyzer and tubular fixed bed reactor using the $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst. Sulfur removal capacity of $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst is largely enhanced above both the temperature of $450^{\circ}C$ and the loading of 6wt% due to the participation of alumina support in a sulfation reaction. The NO reduction efficiency of 8wt% $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst shows the maximum value at $370^{\circ}C$ and then decreases with the increase of reaction temperature due to the oxidation of $NH_3$ gas. The presence of sulfate on the surface of sorbent/catalyst enhances the optimum reaction temperature showing the maximum deNOx efficiency. In the simultaneous removal of SOx and NOx at $250^{\circ}C$. deNOx activity of $CuO/{\gamma}-Al_2O_3$ sorbent/catalyst is rapidly decreased due to the formation of ammonium salts such as $NH_4HSO_4$. In the simultaneous removal reaction of SOx and NOx, the optimum temperature showing the maximum deNOx efficiency increases to $400^{\circ}C$ due to the presence of $SO_2$ gas.

  • PDF

De-NOX evaluation of SCR catalysts adding vanadium-graphene nanocomposite (바나듐 담지된 그래핀 나노복합체를 첨가한 SCR 촉매의 제조 및 활성 평가)

  • Jeong, Bora;Lee, Heesoo;Kim, Eok-Soo;Kim, HongDae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.252-256
    • /
    • 2015
  • Nitrogen oxides ($NO_X$) was emitted from flue gas of stationary sources and exhaust gas of mobile sources, can leads to various environments problems. Selective Catalysts Reduction (SCR) is the most effective $NO_X$ removal system. Commercial $V_2O_5-WO_3/TiO_2$ catalysts, usually containing $V_2O_5$ 0.5~3 wt%, $WO_3$ 5~10 wt%, and $V_2O_5$ is active in the reduction of $NO_X$ but also in the desired oxidation of $SO_2$ to $SO_3$. To reduce the amount of vanadium, using graphene matrix supported vanadium to synthesize nanocomposite. Then, we fabricated to 1 inch honeycomb type of SCR catalysts adding graphene-vanadium nanocomposite. The chemical-physical characteristics and the catalytic activity were performed by XRD, XRF, BET and Micro-Reactor (MR). As a result, the De-NOX performance was showed, similar to the commercial catalyst activity as 77.8 % and using nanocomposite catalyst as 77.1 % at $350^{\circ}C$.

Application of CFD to Design Procedure of Ammonia Injection System in DeNOx Facilities in a Coal-Fired Power Plant (석탄화력 발전소 탈질설비의 암모니아 분사시스템 설계를 위한 CFD 기법 적용에 관한 연구)

  • Kim, Min-Kyu;Kim, Byeong-Seok;Chung, Hee-Taeg
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • Selective catalytic reduction (SCR) is widely used as a method of removing nitrogen oxide in large-capacity thermal power generation systems. Uniform mixing of the injected ammonia and the inlet flue gas is very important to the performance of the denitrification reduction process in the catalyst bed. In the present study, a computational analysis technique was applied to the ammonia injection system design process of a denitrification facility. The applied model is the denitrification facility of an 800 MW class coal-fired power plant currently in operation. The flow field to be solved ranges from the inlet of the ammonia injection system to the end of the catalyst bed. The flow was analyzed in the two-dimensional domain assuming incompressible. The steady-state turbulent flow was solved with the commercial software named ANSYS-Fluent. The nozzle arrangement gap and injection flow rate in the ammonia injection system were chosen as the design parameters. A total of four (4) cases were simulated and compared. The root mean square of the NH3/NO molar ratio at the inlet of the catalyst layer was chosen as the optimization parameter and the design of the experiment was used as the base of the optimization algorithm. The case where the nozzle pitch and flow rate were adjusted at the same time was the best in terms of flow uniformity.

A Study on the Economic Analysis of Low-Temperature SCR Technology for NOx Reduction by Scenarios (배연탈질을 위한 저온 SCR 기술 도입에 따른 시나리오별 경제성 분석)

  • Hong, Sungjun;Lee, Youah;Jeong, Soonkwan
    • Journal of Energy Engineering
    • /
    • v.29 no.2
    • /
    • pp.10-22
    • /
    • 2020
  • As the national demand for solving the fine dust problem has increased, the government has announced intensive measures to deal with fine dust. So recently, selective catalytic reduction(SCR) has attracted attention as a technology for removing nitrogen oxides from precursors of fine dust. In this study, the government's policies related to fine dust and the current status of market and R&D were investigated, and economic analysis by scenarios was conducted by dividing cases where SCR technology was applied to industries. The results of economic analysis for each scenario were calculated using NPV, and companies with no denitrification facilities(Case 1) introduced general SCR technologies(Scenario 1-1) and low-temperature SCR technologies(Scenario 1-2). In addition, companies that have already installed denitrification facilities(Case 2) analyzed the two categories, using the general SCR technology as it is(Scenario 2-1) and replacing it with low-temperature SCR technology(Scenario 2-2). Comparative analysis was performed based on the results of each NPV.