Low-Temperature SCR of NO over Physical Mixture of MnO2 and Metal-Loaded Activated Carbon

MnO2와와 금속담지활성탄의 물리적 혼합물을 이용한 NO의 저온 선택적 촉매 환원 반응

  • Choi, Jong Cheol (Faculty of Environmental Engineering, University of Seoul) ;
  • Cho, Chul-Hoon (Nano Stech Co., Ltd., R&DB Center) ;
  • Jeong, Kwang-Eun (New Chemistry Division, Korea Research Institute of Chemical Technology) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University) ;
  • Yim, Jin-Hyeong (Division of Advanced Materials Engineering, Kongju National University) ;
  • Park, Young-Kwon (Faculty of Environmental Engineering, University of Seoul)
  • Received : 2007.11.08
  • Accepted : 2007.11.28
  • Published : 2008.02.10

Abstract

Selective catalytic reduction (SCR) of NO with ammonia was carried out over the physical mixture of $MnO_2$ and K or Cu-loaded activated carbons (AC) at low temperature. Introduction of oxygen affected positively the reduction of NO. Metal-impregnated AC showed significantly enhanced catalytic activity. Without water, the mixed catalyst of $MnO_2$ and K-loaded AC exhibited the best activity in the reduction of NO at $120^{\circ}C$. On the contrary, the activities of all the catalysts were significantly diminished in the presence of water. The mixed catalyst of $MnO_2$ and Cu-loaded AC treated with nitric acid and heat (1 : 1, w/w) exhibited the better activity for the reduction of NO than each single catalyst in presence of water.

$MnO_2$와 K 또는 Cu 담지 활성탄으로 이루어진 혼성촉매상에서 암모니아를 환원제로 사용한 NO의 저온 선택적 촉매 환원반응을 수행하였다. 반응물에 산소를 투입한 경우 NO의 제거율은 증가하였으며, 활성탄에 전이금속을 담지할 경우 탈질 효율이 증가한다. 수분이 존재하지 않는 경우 $MnO_2$와 K 담지 활성탄으로 이루어진 혼성촉매가 $120^{\circ}C$의 저온에서 가장 높은 탈질 효율을 보였으나, 수분이 존재할 경우 모든 촉매의 활성은 현저하게 떨어졌다. 수분 존재 시 $MnO_2$와 질산처리/열처리를 한 Cu 담지 활성탄을 물리적으로 1 : 1 (w/w) 비율로 혼합한 촉매가 $MnO_2$와 Cu 담지 활성탄을 단독으로 사용한 것에 비해 탈질효율이 더 우수하였다.

Keywords

References

  1. I. Glassman, Combustion, 2nd ed., 318, Academic Press, New York (1987)
  2. A.-K. Hjalmarsson, NOx Control Technologies for Coal Combustion, 15, IEA Coal Research, London (1990)
  3. J. Benítez, Process Engineering and Design for Air pollution Control, 254, Prentice-Hall, Englewood Cliffs, NJ (1993)
  4. S. C. Wood, Chem. Eng. Prog., 90, 32 (1994)
  5. I. Mochida, M. Ogaki, H. Fujitsu, Y. Komatsubara, and S. Ida, Fuel, 62, 867 (1983) https://doi.org/10.1016/0016-2361(83)90044-3
  6. Y. Komatsubara, S. Ida, H. Fujitsu, and I. Mochida, Fuel, 63, 1738 (1984) https://doi.org/10.1016/0016-2361(84)90110-8
  7. K. Kusakabe, M. Kashima, S. Morooka, and Y. Kato, Fuel, 67, 714 (1988) https://doi.org/10.1016/0016-2361(88)90304-3
  8. E. Richter, H.-J. Schmidt, and H.-G. Schecker, Chem. Eng. Technol., 13, 332 (1990) https://doi.org/10.1002/ceat.270130146
  9. L. Singoredjo, F. Kapteijn, J. A. Moulijn, J.-M. Martín- Martínez, and H.-P. Boehm, Carbon, 31, 213 (1993) https://doi.org/10.1016/0008-6223(93)90175-A
  10. S. N. Ahmed, R. Baldwin, F. Derbyshire, B. McEnaney, and J. Stencel, Fuel, 72, 287 (1993) https://doi.org/10.1016/0016-2361(93)90044-3
  11. J. K. Lee, D. J. Suh, S. Par, and D. Park, Fuel, 72, 935 (1993) https://doi.org/10.1016/0016-2361(93)90290-I
  12. J. K. Lee, T.-J. Park, D. Park, and S. Park, Ind. Eng. Chem. Res., 32, 1882 (1993) https://doi.org/10.1021/ie00021a011
  13. B. J. Ku, J. K. Lee, D. Park, and H.-K. Rhee. Ind. Eng. Chem. Res., 33, 2868 (1994) https://doi.org/10.1021/ie00035a042
  14. M. T. Izquierdo and B. Rubio. Environ. Sci. Technol., 32, 4017 (1998) https://doi.org/10.1021/es980218+
  15. J. Muñiz, G. Marban, and A. B. Fuertes. Appl. Catal. B: Environ., 23, 25 (1999) https://doi.org/10.1016/S0926-3373(99)00063-6
  16. H. Teng, Y.-F. Hsu, and Y.-T. Tu. Appl. Catal. B: Environ., 20, 145 (1999) https://doi.org/10.1016/S0926-3373(98)00102-7
  17. J. Pasel, P. Kassner, B. Montanari, M. Gazzano, A. Vaccari, W. Makowski, T. Lojewski, R. Dziembaj, and H. Papp. Appl. Catal. B: Environ., 18, 199 (1998) https://doi.org/10.1016/S0926-3373(98)00033-2
  18. M. Yoshikawa, A. Yasutake, and I. Mochida. Appl. Catal. A: General, 173, 239 (1999) https://doi.org/10.1016/S0926-860X(98)00182-3
  19. Z. Zhu, Z. Liu, S. Li, H. Niu, T. Hu, T. Liu, and Y. Xie. Appl. Catal. B: Environ. 26, 25 (2000) https://doi.org/10.1016/S0926-3373(99)00144-7
  20. H. Teng, L.-Y. Hsu, and Y.-C. Lai. Environ. Sci. Technol., 35, 2369 (2001) https://doi.org/10.1021/es001674c
  21. L.-Y. Hsu and H. Teng, Appl. Catal. B: Environ., 35, 21 (2001) https://doi.org/10.1016/S0926-3373(01)00228-4
  22. A. Garcia-Garcia, M. J. Illan-Gomez, A. Linares-Solano, and C. Salinas-Martinez de Lecea, Fuel., 76, 499 (1997) https://doi.org/10.1016/S0016-2361(97)00009-4
  23. L.-Y. Hsu and H, Teng, Appl. Catal. B: Environ., 42, 69 (2003) https://doi.org/10.1016/S0926-3373(02)00216-3
  24. J. Blanco, P. Avila, S. Suarez, J. A. Martin, and C. Knapp, Appl. Catal. B : Environ., 28, 235 (2000) https://doi.org/10.1016/S0926-3373(00)00180-6
  25. F. Kapteijin, A. D. V. Langeveld, J. A. Moulijn, and A. Andreini, J. Catal., 150, 94 (1994) https://doi.org/10.1006/jcat.1994.1325
  26. W. S. Kijlstra, D. S. Brands, E. K. Poles, and A. Bliek, J. Catal., 171, 208 (1997) https://doi.org/10.1006/jcat.1997.1788
  27. J. Y. Lee, S. B. Kimm, and S. C. Hong, Chemosphere, 50, 1115 (2003) https://doi.org/10.1016/S0045-6535(02)00708-7
  28. N. Rao and O. Hougen, Chem. Eng. Prog. Symp. Ser., 48, 110 (1952)
  29. I. Mochida, S. Kisamori, M. Kawano, Y. Matsumura, and M. Yoshikawa, Energy Fuels, 8, 1341 (1994) https://doi.org/10.1021/ef00048a024
  30. I. Mochida, N. Shirahama, S. Kawano, Y. Korai, A. Yasutake, and M. Tanoura, Fuel, 79, 1713 (2000) https://doi.org/10.1016/S0016-2361(00)00034-X
  31. A. M. Rubel, M. L. Stewart, and J. M. Stencel, J. Mater. Res., 10, 562 (1995) https://doi.org/10.1557/JMR.1995.0562
  32. Z. Zhu, Z. Liu, S. Liu, and H. Niu, Fuel, 79, 651 (2000) https://doi.org/10.1016/S0016-2361(99)00192-1
  33. F. Gonçalves and J. L. Figueiredo, Appl. Catal. B: Environ., 50, 271 (2004) https://doi.org/10.1016/j.apcatb.2004.01.014
  34. G. Qi and R. T. Yang J. Catal., 271, 438 (2003)
  35. J. Muniz, G. Marban, and A. B. Fuertes, Appl. Catal. B: Environ., 23, 25 (1999) https://doi.org/10.1016/S0926-3373(99)00063-6