Effect to Fillers for FKM (Fluorocarbon rubber) Gasket in Fuel Cell Stack

연료전지 스택 가스켓용 불소고무에 있어 충전제 종류에 따른 영향

  • Hur, Byung-ki (Research & Development Institute, Pyung-hwa Oil seal Industry Co., LTD.) ;
  • Kang, Dong-gug (Research & Development Institute, Pyung-hwa Oil seal Industry Co., LTD.) ;
  • Yoo, Il-hyuk (Research & Development Institute, Pyung-hwa Oil seal Industry Co., LTD.) ;
  • Lee, Dong-won (Department of Polymer Science, Kyungpook National University) ;
  • Seo, Kwan-ho (Department of Polymer Science, Kyungpook National University) ;
  • Park, Lee-soon (Department of Polymer Science, Kyungpook National University)
  • 허병기 (평화오일씰공업(주) 기술개발본부) ;
  • 강동국 (평화오일씰공업(주) 기술개발본부) ;
  • 유일혁 (평화오일씰공업(주) 기술개발본부) ;
  • 이동원 (경북대학교 고분자공학과) ;
  • 서관호 (경북대학교 고분자공학과) ;
  • 박이순 (경북대학교 고분자공학과)
  • Received : 2007.10.26
  • Accepted : 2008.01.05
  • Published : 2008.02.10

Abstract

The rubber was compounded with carbon black and silica series-filler to examine the effects of the various rubber fillers on a gasket material's suitability and fuel cell stack conclusion. The evaluation of a long term heat resistance and oil resistance of the mixed rubber material was performed considering at the drive environment of PEMFC. Test results of compression set for the most influencing property of gasket showed that it was about less than 15% at long term of up to 1000 h. In this experiment, FEM analysis is carried out about the rubber material's properties depending on each filler and the stress which is produced when a gasket is contracted by using various filler. Sealing force was expected to maximum 2.5 MPa from minimum 0.2 MPa by using FEM (finite element method) at stacking gasket to gasket.

다양한 고무 충전제가 연료전지 스택용 가스켓의 재료로서의 적합성 및 스택체결에 있어 미치는 영향을 살펴보기 위하여, 카본블랙 및 실리카계 충전제를 사용하여 고무를 배합하였다. 이렇게 배합된 고무재료를 PEMFC (polymer electrolyte membrane fuel cell)의 구동환경을 고려하여 열과 상대유에 대한 장기평가를 실시하였다. 가스켓에 가장 요구되는 압축 영구 줄음율은, 1000 h까지의 장기평가에서도 15% 이하의 우수한 특성을 보였다. 다양한 충전제를 사용한 배합한 고무재료로 가스켓을 제작하고, 체결시 가스켓과 가스켓 사이의 밀봉력을 FEM (finite element method)을 실시하여 최소 0.2 MPa에서 최대 2.5 MPa일 것으로 예측되었다.

Keywords

References

  1. H. K. Kim and S. C. Nah, New Renewable energy & Fuel Cell, 11 (2006)
  2. 工藤徹一, 山本治, 岩原弘育, 燃料電池, 17 (2007)
  3. L. J. Blomen and M. J. Mugerwa, Fuel Cell System (1993)
  4. K. Kordesch and G. Simader, Fuel Cells and their Application (1996)
  5. 黒木, 燃料電池, 5, 67 (2005)
  6. 日本ゴム協会, 日本工業便覧, 320 (1982)
  7. Plastic, rubber mixing chemicals, 217 (1990)
  8. P. G. Patil, Fuel cell Seminar, Tucson, Arizona (1992)
  9. B. M. Gorelik and G. I. Feld'man, Soviet Rubber Technology, 22, 27 (1963)
  10. A. Strozzi, Experimental Stress Analysis, ed. H.Wieringa, 613, Martinus Nijhoff Publ. (1986)
  11. B. M. Gorelik, M. F. Buhina, and A. V. Ratner, Soviet Rubber Technology, 20, 10 (1961)
  12. B. M. Gorelik and G. I. Feld'man, Soviet Rubber Technology, 23, 21 (1964)
  13. P. B. Lindley, J. of IRI, 4, 209 (1967)
  14. J. G. Curro and E. A. Salazar, Rubber Chemistry and Technology, 46, 530 (1973) https://doi.org/10.5254/1.3542924
  15. T. Ebisu, M. Yamamoto, H. Maekawa, and A. Onodera, Patram 83, 672 (1983)
  16. A. F. George, A. Strozzi, and J. I. Rich, Tribology International, 20, 237 (1987) https://doi.org/10.1016/0301-679X(87)90023-5
  17. N. W. B. Clarke, Inst. Public Health Engrs. Journal, 63, 108 (1964)