Extraction Characteristics of Heavy Metals for Soil Washing of Mine Tailings-contaminated Soil according to Particle Size Distribution

토양세척공정에서 광미오염토양 입자크기에 따른 중금속 추출특성

  • Received : 2007.11.14
  • Accepted : 2007.12.11
  • Published : 2008.02.10

Abstract

This research was performed to evaluate the extraction characteristics of heavy metals for soil washing of mine tailings-contaminated soil according to particle size distribution and the chemical distributional existence of the metals. As the soil particle size was decreased, the extracted concentrations of heavy metals was increased except Fe and Mn. Most of all heavy metals were extracted within 6 h by soil washing with 0.05 M EDTA. Extraction efficiency of metals was decreased for Pb, Cu, and Zn with decreasing of particle size. Significant difference was not observed in extraction efficiency for Cd according to particle size distribution. Extraction efficiency for Cd was the highest as 86~91%, while the lowest as 5~14% for Fe. Most metals of the soil without soil washing was distributed as reducible, oxidizable, and residual fractions. Pb, Zn, and Cd existed as reducible (Fe/Mn oxide) and residual fractions and Cu existed as oxidizable and residual fractions after soil washing treatment with 0.05 M EDTA. As the soil particle size was decreased, residual fraction was increased for Pb and Cu. About 90% of reducible fraction in Pb, Zn, and Cd was removed by soil washing with 0.05 M EDTA. As the results, it was founded that soil particle size was the important parameter to effect on distributional fraction and extraction efficiency of metals in mine tailings-contaminated soil.

본 연구는 광미오염토양을 대상으로 입자크기에 따른 토양세척기술의 중금속 추출특성 평가와 토양세척 전과 후의 화학적 분포형태를 파악하고자 실시되었다. 오염토양의 입자크기 별 총 농도는 모든 중금속에서 입자가 작을수록 증가하는 경향을 보였지만, Fe과 Mn은 입자크기와는 무관하였다. 0.05 M EDTA를 이용한 토양세척(Soil washing)에 의한 중금속 추출은 모든 중금속에서 추출 6 h 내에 준평형상태에 도달하였다. 추출효율은 입자크기가 작을수록 Pb, Cu, Zn의 일부에서 추출효율이 감소하였지만, Cd에서는 추출효율의 차이가 크지 않았다. Cd의 추출효율이 86~91%로 가장 높은 반면에 Fe이 5~14%로 가장 적었다. 화학적 분포형태는 토양세척 이전 모든 중금속에서 거의 대부분이 환원성, 산화성, 잔류성으로 존재하였으며 특히, Pb과 Cu는 입자가 작을수록 잔류성 형태도 증가하였다. 그러나, 0.05 M EDTA에 의한 토양세척 이후에는 Cu를 제외하고 Pb, Zn, Cd에서 상당부분이 환원성(Fe/Mn산화물)과 잔류성으로 존재하였고, Cu는 주로 산화성과 잔류성으로 존재하였다. 특히, Pb과 Cu는 입자가 작을수록 잔류성 형태도 증가하였다. 또한, Pb, Zn, Cd에서 환원성형태의 화합물이 0.05 M EDTA에 의해 거의 90% 이상이 제거되었다. 본 연구결과 광미오염토양의 중금속 분포형태 및 추출효율은 많은 인자들 외에 광물학적 요인과 함께 토양입자크기에 좌우되는 주요인자임이 확인되었다.

Keywords

Acknowledgement

Supported by : 한림성심대학

References

  1. M. B. Mcbride, S. Sauve, and W. Hendershot, European J. Soil Sci., 48, 337 (1997) https://doi.org/10.1111/j.1365-2389.1997.tb00554.x
  2. J. E. Vanbenschoten, M. R. Mastumoto, and W. H. Young, J. Env. Eng., March, 217 (1997)
  3. H. A. Elliott, M. R. Liberati, and C. P. Huang, J. Env. Qual., 15, 214 (1986) https://doi.org/10.2134/jeq1986.00472425001500030002x
  4. H. M. Freeman and E. F. Harris, Hazardous Waste Remediation, ed. H. M. Freeman and E. F. Harris, TECHNOMIC Publishing Co., Inc., 103 (1995)
  5. R. W. Peters and L. Shem, Metal Speciation and Contamination of Soil, ed. H. E. Allen, C. P. Huang, G. W. Bailey, and A. R. Bowers, Lewis Publishers, 255 (1995)
  6. B. J. W. Tuin and M. Tels, Environmental Technology. Letters, 11, 541 (1990) https://doi.org/10.1080/09593339009384895
  7. USEPA, Innovative Technology Ealuation Rport; BIOGENESISTM Soil Wshing Tchnology, EPA/540/R-93/510, Cincinnati, OH (1993)
  8. J. E. Vanbenschoten, B. E. Reed, M. R. Mastumoto, and P. J. McGarvey, Water Env. Research, 66, 168 (1994) https://doi.org/10.2175/WER.66.2.11
  9. P. S. Yarlagadda, M. R. Mastumoto, J. E. Vanbenschoten, and A. Kathuria, J. Env. Eng., 121, 276 (1995) https://doi.org/10.1061/(ASCE)0733-9372(1995)121:4(276)
  10. R. W. Peters and L. Shem, Metal Speciation and Contamination of Soil, ed. H. E. Allen, C. P. Huang, G. W. Bailey, and A. R. Bowers, Lewis Publishers, 255 (1995)
  11. J. D. Kim, Korean Society of Env. Eng., 27, 626 (2005)
  12. C. R. Evanko and D. A. Dzombak, Groundwater Remediation Technologies Analysis Center, Pittsburgh, PA (1997)
  13. USEPA, Recent Developments for In Situ Treatment of Metal Contaminated Soils, Washington, D.C (1997)
  14. Agricultural Science & Tech., Chemical Analysis of Soil (1988)
  15. C. A. Black, D. D. Evans, L. E. Ensminger, J. L. White, F. E. Clark, and R. C. Dinauer, Methods of Soil Analysis, 5th ed., American Society of Agronomy, Wisconsin (1979)
  16. Y. Harada and A. Inoko, Soil Science Plant Nutrition, 26, 353 (1980) https://doi.org/10.1080/00380768.1980.10431220
  17. A. Chlopecka, J. R. Bacon, M. J. Wilson, and J. Kay, J. Env. Qual., 25, 69 (1996) https://doi.org/10.2134/jeq1996.00472425002500010009x
  18. A. M. Ure, Heavy Metal in Soil, ed. B. J. Alloway, Blackie and Sons Ltd., 40 (1990)
  19. A. Tessier, P. G. C. Campbell, and M. Bisson, Analytical Chemistry, 51, 844 (1979) https://doi.org/10.1021/ac50043a017
  20. J. D. Kim and W. Namkoong, J. Korean Society of Waste Manag., 20, 125 (2003)
  21. D. K. Lee, D. Y. Chung, and K. S. Lee, J. Kor. Soc. Soil and Groundwater Env., 2, 69 (1997)
  22. K. G. Kim, Monitoring and Risk Assessment of Contaminated Soils Around Mining Areas by Sequential Extraction Analysis, Kwangju Institute of Science & Technology, Master Thesis, Korea (1998)
  23. S. R. Cline, Efficiences of Soil Washing/Flushing Solutions for the Remediation of Lead Contaminated Soils, Master Thesis, The College of Engineering, West Virginia University, USA (1993)
  24. T. H. Christensen, Water, Air, and Soil Pollution, 34, 293 (1987) https://doi.org/10.1007/BF00193777
  25. D. L. Sparks, Environmental Soil Chemistry, Academic Press, Inc. (1995)
  26. J. D. Kim, Korean Society of Env. Eng., 27, 626 (2005)
  27. D. L. Sparks, Environmental Soil Chemistry, Academic Press, Inc. (1995)
  28. C. E. Martinez and M. B. McBride, Env. Sci. & Technol., 32, 743 (1998) https://doi.org/10.1021/es970262+
  29. KIST, Reclamation Technology for Wasted Mine, Technical Report for Environmental Remediation I (1997)
  30. D. B. Levy, K. A. Barbarick, E. G. Siemer, and L. E. Sommers, J. Env. Qual., 21, 185 (1992) https://doi.org/10.2134/jeq1992.00472425002100020006x
  31. J. W. Kim, H. S. Moon, Y. K. Song, and J. H. Yu, Korean Society of Economic and Env. Geology, 32, 261 (1999)
  32. L. Q. Ma and G. N. Rao, J. Env. Qual., 26, 259 (1997) https://doi.org/10.2134/jeq1997.00472425002600010036x
  33. E. K. A. Hudson, M. G. Macklin, C. D. Curtis, and D. J. Vaughan, Env. Sci. & Technol., 30, 72 (1996) https://doi.org/10.1021/es9500724
  34. M. V. Ruby, A. Davis, and A. Nicholson, Env. Sci. & Technol., 28, 646 (1994) https://doi.org/10.1021/es00053a018
  35. M. G. Hickey and J. A. Kittrick, J. Env. Qual., 13, 372 (1984) https://doi.org/10.2134/jeq1984.00472425001300030010x
  36. M. Mcbride, S. Sauve, and W. Hendershot, European J. Soil Sci., 48, 337 (1997) https://doi.org/10.1111/j.1365-2389.1997.tb00554.x
  37. Z. Li and L. M. Shuman, Soil Science, 161, 656 (1996) https://doi.org/10.1097/00010694-199610000-00003
  38. B. J. Alloway, Cadmium: Heavy Metals in Soils, Blackie and Sons Ltd., 100 (1990)