DOI QR코드

DOI QR Code

Formation of N2O in NH3-SCR DeNOxing Reaction with V2O5/TiO2-Based Catalysts for Fossil Fuels-Fired Power Stations

화력발전소용 V2O5/TiO2계 촉매상에서 NH3-SCR 탈질반응으로부터의 N2O 생성

  • Kim, Moon Hyeon (Department of Environmental Engineering, Daegu University)
  • 김문현 (대구대학교 환경공학과)
  • Received : 2012.11.27
  • Accepted : 2012.12.29
  • Published : 2013.04.01

Abstract

Selective catalytic reduction of $NO_x$ by $NH_3$ ($NH_3$-SCR) over $V_2O_5/TiO_2$-based catalysts is recently reported to be an anthropogenic emitter of $N_2O$ that is a global warming gas with a global warming potential of 310. Therefore, this review will get a touch on significance of some parameters regarding $N_2O$ formation in the $deNO_xing$ reaction for fossil fuels-fired power plants applications. The $N_2O$ production in $NH_3$-SCR reaction with such catalysts occurs via side reactions between $NO_x$ and $NH_3$ in addition to $NH_3$ oxidation, and the extent of these undesired reactions depends strongly on the loadings of $V_2O_5$ as a primary active component and the promoter as a secondary one ($WO_3$ and $MoO_3$) in the SCR catalysts, the feed and operating variables such as reaction temperature, $NO_2/NO_x$ ratio, oxygen concentration, gas hourly space velocity, water content and thermal excursion, and the physical and chemical histories of the catalysts on site. Although all these parameters are associated with the $N_2O$ formation in $deNO_xing$ reaction, details of some of them have been discussed and a better way of suppressing the $N_2O$ production in commercial SCR plants has been proposed.

$V_2O_5/TiO_2$계 촉매상에서 $NH_3$에 의한 $NO_x$의 선택적환원은 310의 지구온난화지수를 갖는 $N_2O$의 또 다른 인위적인 배출원이 될 수 있는 것으로 보고되고 있으므로, 본 총설은 화석연료를 연소시키는 화력발전소용 상기 촉매상에서 SCR 탈질반응 동안에 $N_2O$ 생성과 관계되는 주요 변수들의 유의성을 다루고자 한다. $NH_3$-SCR 탈질반응에서 $N_2O$ 배출은 $NH_3$ 산화반응에 더하여 반응 중에 존재하는 $NO_x$$NH_3$ 간의 부반응을 통해 일어나 이 부반응들의 정도는 SCR 촉매의 활성성분인 $V_2O_5$의 함량과 조촉매의 종류($WO_3$$MoO_3$), 반응온도, $NO_2/NO_x$ 비율, 산소농도, 공간속도, 수분함량, 열처리 등과 같은 유입가스 조건과 운전변수 및 화력발전소 현장에 설치된 상용 SCR 탈질공정에서 격은 촉매의 이력에 크게 의존한다. 상기의 모든 변수들이 탈질반응에서 $N_2O$ 생성과 관계된다고 할지라도, 몇몇 핵심변수들이 $N_2O$ 생성에 미치는 영향과 상용 SCR 공정에서 $N_2O$ 생성을 억제할 수 있는 방안이 고찰되었다.

Keywords

References

  1. Ham, S. W. and Nam, I. S., in J. J. Spivey (Ed.), Selective Catalytic Reduction of Nitrogen Oxides by Ammonia, The Royal Society of Chemistry, Cambridge, 236-271(2002).
  2. Choi, J. H., Kim, M. H. and Nam, I. S., "Heating Element of an Air Preheater in a Utility Boiler as an SCR Reactor Removing NO by $NH_3$," Ind. Eng. Chem. Res., 44, 707-714(2005). https://doi.org/10.1021/ie0492653
  3. Kim, M. H. and Ham, S. W., "Determination of $N_2O$ Emissions Levels in the Selective Reduction of $NO_x$ by $NH_3$ over an On-Site-Used Commercial $V_2O_5-WO_3/TiO_2$ Catalyst using a Modified Gas Cell," Top. Catal., 53, 597-607(2010). https://doi.org/10.1007/s11244-010-9493-9
  4. Lietti, L., Nova, I., Ramis, G., Acqua, L.D., Busca, G., Giamello, E., Forzatti, P. and Bregani, F., "Characterization and Reactivity of $V_2O_5-MoO_3\;De-NO_x$ SCR Catalysts," J. Catal., 187, 419-435 (1999). https://doi.org/10.1006/jcat.1999.2603
  5. Madia, G., Elsener, M., Koebel, M., Raimondi, F. and Wokaun, A., "Thermal Stability of Vanadia-Tungsta-Titania Catalysts in the SCR Process," Appl. Catal. B, 39, 181-190(2002). https://doi.org/10.1016/S0926-3373(02)00099-1
  6. Martin, J. A., Yates, M., Avila, P., Suarez, S. and Blanco, J., "Nitrous Oxide Formation in Low Temperature Selective Catalytic Reduction of Nitrogen Oxides with $V_2O_5/TiO_2$ Catalysts," Appl. Catal. B, 70, 330-334(2007). https://doi.org/10.1016/j.apcatb.2005.11.026
  7. Yang, W. H. and Kim, M. H., "Catalytic Reduction of $N_2O$ by $H_2$ over Well-Characterized Pt Surfaces," Korean J. Chem. Eng., 23, 908-918(2006). https://doi.org/10.1007/s11814-006-0007-1
  8. Perez-Ramirez, J., Kapteijn, F., Schoffel, K. and Moulijn, J. A., "Formation and Control of $N_2O$ in Nitric Acid Production: Where Do We Stand Today?," Appl. Catal. B, 44, 117-151(2003). https://doi.org/10.1016/S0926-3373(03)00026-2
  9. Wigley, T. M. L., "The Kyoto Protocol: $CO_2,\;CH_4$ and Climate Implications," Geophys. Res. Lett., 25, 2285-2288(1998). https://doi.org/10.1029/98GL01855
  10. Kim, M. H., "Emission Control Technologies for $N_2O$ from Adipic Acid Production Plants," J. Environ. Sci., 20, 755-765(2011).
  11. Turns, S. R., An Introduction to Combustion: Concepts and Applications, 2nd ed., McGraw-Hill, Singapore(2000).
  12. Correa, S. M., "A Review of $NO_x$ Formation under Gas-Turbine Combustion Conditions," Combust. Sci. Technol., 87, 329-362(1992).
  13. de Soete, G. G., "Nitrous Oxide from Combustion and Industry: Chemistry, Emissions and Control," Rev. Inst. Franc. Petr., 48, 413-451(1993). https://doi.org/10.2516/ogst:1993026
  14. Gutierrez, M. J. F., Baxter, D., Hunter, C. and Svoboda, K., "Nitrous Oxide $(N_2O)$ Emissions from Waste and Biomass to Energy Plants," Waste Manage. Res., 23, 133-147(2005). https://doi.org/10.1177/0734242X05052803
  15. Wojtowicz, M. A., Pels, J. R. and Moulijn, J. A., "$N_2O$ Emission Control in Coal Combustion," Fuel, 73, 1416-1422(1994). https://doi.org/10.1016/0016-2361(94)90056-6
  16. Krocher, O. and Elsener, M., "Chemical Deactivation of $V_2O_5/WO_3-TiO_2$ SCR Catalysts by Additives and Impurities from Fuels, Lubrication Oils, and Urea Solution: I. Catalytic Studies," Appl. Catal. B, 75, 215-227(2008).
  17. Parvulescu, V. I., Grange, P. and Delmon, B., "Catalytic Removal of NO," Catal. Today, 46, 233-316(1998). https://doi.org/10.1016/S0920-5861(98)00399-X
  18. Koebel, M., Madia, G. and Elsener, M., "Selective Catalytic Reduction of NO and $NO_2$ at Low Temperatures," Catal. Today, 73, 239-247(2002). https://doi.org/10.1016/S0920-5861(02)00006-8
  19. Madia, G., Koebel, M., Elsener, M. and Wokaun, A., "Side Reactions in the Selective Catalytic Reduction of $NO_x$ with Various $NO_2$ Fractions," Ind. Eng. Chem. Res., 41, 4008-4015(2002). https://doi.org/10.1021/ie020054c
  20. Kim, D. W., Kim, M. H. and Ham, S. W., "An On-line Infrared Spectroscopic System with a Modified Multipath White Cell for Direct Measurements of $N_2O$ from N$NH_3$-SCR Reaction," Korean J. Chem. Eng., 27, 1730-1737(2010). https://doi.org/10.1007/s11814-010-0296-2
  21. Djerad, S., Crocoll, M., Kureti, S., Tifouti, L. and Weisweiler, W., "Effect of Oxygen Concentration on the $NO_x$ Reduction with Ammonia over $V_2O_5-WO_3/TiO_2$ Catalyst," Catal. Today, 113, 208-214(2006). https://doi.org/10.1016/j.cattod.2005.11.067
  22. Suarez, S., Jung, S. M., Avila, P., Grange, P. and Blanco, J., "Influence of $NH_3$ and NO Oxidation on the SCR Mechanism on Copper/ Nickel and Vanadium Oxide Supported on Alumina and Titania," Catal. Today, 75, 331-338(2002). https://doi.org/10.1016/S0920-5861(02)00055-X
  23. Blanco, J., Avila, P., Suarez, S., Martin, J. A., Knapp, C., "Aluminaand Titania-Based Monolithic Catalysts for Low Temperature Selective Catalytic Reduction of Nitrogen Oxides," Appl. Catal. B, 28, 235-244(2000). https://doi.org/10.1016/S0926-3373(00)00180-6
  24. Kim, M. H. and An, T. H., "A Commercial $V_2O_5-WO_3/TiO_2$ Catalyst Used at an $NH_3$-SCR $deNO_x$ Process in an Oil-Fired Power Plant: Cause of an Increase in $deNO_xing$ and $NH_3$ Oxidation Performances at Low Temperatures," Res. Chem. Intermed., 37, 1333-1344(2011). https://doi.org/10.1007/s11164-011-0401-0
  25. Forzatti, P., "Present Status and Perspectives in $De-NO_x$ SCR Catalysis," Appl. Catal. A, 222, 221-236 (2001). https://doi.org/10.1016/S0926-860X(01)00832-8
  26. Djerad, S., Tifouti, L., Crocoll, M. and Weisweiler, W., "Effect of Vanadia and Tungsten Loadings on the Physical and Chemical Characteristics of $V_2O_5-WO_3/TiO_2$ Catalysts," J. Mol. Catal. A, 208, 257-265(2004). https://doi.org/10.1016/j.molcata.2003.07.016
  27. Lietti, L., Nova, I. and Forzatti, P., "Selective Catalytic Reduction (SCR) of NO by $NH_3$ over $TiO_2$-Supported $V_2O_5-WO_3$ and $V_2O_5-MoO_3$ Catalysts," Top. Catal., 11/12, 111-122(2000). https://doi.org/10.1023/A:1027217612947

Cited by

  1. O Formation vol.51, pp.3, 2013, https://doi.org/10.9713/kcer.2013.51.3.313
  2. Enhanced NH3-SCR activity of Sb-V/CeO2–TiO2 catalyst at low temperatures by synthesis modification vol.42, pp.1, 2016, https://doi.org/10.1007/s11164-015-2329-2
  3. 고정원 탈질시스템의 성능관리와 탈질촉매 재생전략 vol.22, pp.3, 2013, https://doi.org/10.7464/ksct.2016.22.3.141
  4. Fe/BEA 제올라이트 촉매의 N2O/NO 동시 환원 반응에서 금속 담지 방법이 촉매 활성에 미치는 영향 vol.55, pp.5, 2013, https://doi.org/10.9713/kcer.2017.55.5.679
  5. 세라믹 시트 필터에 부착된 V2O5-WO3/TiO2 촉매의 NO 환원 성능 vol.24, pp.1, 2013, https://doi.org/10.7464/ksct.2018.24.1.027