• Title/Summary/Keyword: 탈산소

Search Result 74, Processing Time 0.03 seconds

Activity of Deoxygenation Reaction on Ni/MgO-$Al_2O_3$ : Effect of Calcination Temperature (소성온도에 따른 Ni/MgO-$Al_2O_3$ 촉매의 탈산소 반응 활성)

  • Eum, Ic-Hwan;Jeong, Dae-Woon;Kim, Ki-Sun;Roh, Hyun-Seog;Yi, Bo Eun;Na, Jeong-Geol;Ko, Chang Hyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.243.2-243.2
    • /
    • 2010
  • 현재 바이오디젤(Bio diesel)은 유지와 메탄올을 염기촉매를 넣고 전이에스테르화(Trans-esterification)반응하여 생산한다. 생산된 1세대 바이오 디젤은 분자 내 산소가 다량 함유되어 여러 가지 단점을 가지기 때문에 전이에스테르화 반응을 대체한 탈산소(Deoxygenation)반응이 주목 받고 있다. 본 연구에서는 유리지방산(Free fatty acid, FFA)인 올레익 산(Oleic acid)의 탈산소반응을 수행하였다. 하이드로탈사이트(Hydrotalcites) 구조인 MgO-$Al_2O_3$(MgO=70 wt%)를 6시간 동안 $500^{\circ}C$에서 예비소성(Pre-calcination)하여 담체로 사용하였다. 제조된 MgO-$Al_2O_3$ 담체에 함침법(Incipient wetness method)으로 20 wt% Ni을 담지 시켰다. 제조된 Ni/MgO-$Al_2O_3$촉매는 소성온도를 변화시켜 반응 실험을 수행하였다. TPR 분석을 통해 산화-환원특성을 분석하였고 생성물의 원소분석을 통해 생성물의 산소함량을 측정하였다.

  • PDF

Synthesis of Ni supported on Ce-$ZrO_2$ for HDO Reaction to Produce New Generation Bio-diesel (차세대 바이오디젤 생산을 위한 HDO 반응용 Ce-$ZrO_2$에 담지된 Ni 촉매 합성)

  • Jeong, Dae-Woon;Eum, Ic-Hwan;Kim, Ki-Sun;Ko, Chang-Hyun;Roh, Hyun-Seog
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.527-527
    • /
    • 2009
  • 1세대 바이오디젤인 fatty acid methyl ester(FAME)의 문제점을 극복하기 위하여 많은 연구가 진행 중 이다. 소위 차세대 바이오디젤은 triglyceride의 산소 화합물을 제거하여 정유 공정을 통해 생산된 디젤과 동일한 특성을 지닌 탄화수소로 전환시킨 오일이다. 이를 위하여 수소를 첨가하여 산소를 제거 시키는 Hydrodeoxygenation(HDO) 반응이 필요하다. 고온($300-400^{\circ}C$), 고압(50-100 bar)의 혹독한 조건에서 높은 수율과 안정성을 보이는 촉매 개발이 필요하다. 이를 위하여 반응물중의 산소를 효과적으로 제거하기 위하여 산소 전달능이 뛰어난 $CeO_2$ 담체에 열안정성을 높이는 $ZrO_2$를 조합한 $Ce-ZrO_2$ 담체를 선정하였으며 수소첨가 탈산소 반응에 활성을 나타낼 것으로 예상되는 니켈을 활성성분으로 선정하였다. 본 연구에서는 15%Ni-$Ce_{(1-x)}Zr_{(x)}O_2$ ($0{\leq}x{\leq}1$)촉매를 공침법(co-precipitation)으로 제조하였으며 $500^{\circ}C$에서 소성하였다. 촉매 특성분석은 XRD, BET, H2-TPR을 이용하였다.

  • PDF

Nocturnal Arterial Oxygen Saturation Monitoring in Patients with Respiratory Disease (호흡기 질환 환자들에서 야간 동맥혈 산소포화도 감시 성적)

  • Choi, In-Seon;Yang, Jae-Beom;Kim, Young-Chul;Chung, Ik-Joo;Kang, Yu-Ho;Koh, Yeoung-Il;Park, Sang-Seon;Lee, Min-Su;Park, Kyung-Ok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.2
    • /
    • pp.103-110
    • /
    • 1994
  • To find out the predictors of nocturnal arterial oxygen desaturation in patients with respiratory diseases, transcutaneous oxygen saturation($StcO_2$) monitoring studies using a pulse oximeter were performed during sleep in 20 patients. $StcO_2$ was decreased more than 4% from the baseline value in 18 patients(90%) and more than 10%("Desaturator") in 8(40%). Five of the seven patients(71.4%) with awake $PaO_2$<60mmHg and three of the thirteen patients(23.1%) with awake $PaO_2{\geq}60mmHg$ were "desaturators". The awake $PaO_2/FIO_2$ and $PaO_2/PAO_2$ could distinguish "desaturator" from "nondesaturator", and $PaO_2,\;SaO_2$ or $StcO_2$ could not. These results suggest that the nocturnal oxygen desaturation depends on the severity of the underlying disease rather than the baseline $PaO_2$. Anthropomorphic and lung function factors could not separate between "desaturator" and "non-desaturator", and about a quater of patients with a wake $PaO_2{\geq}60mmHg$ developed significant desaturation. Therefore, it is necessary to monitor the nocturnal arterial oxygen saturation in patients with respiratory diseases regardless of their severity of airflow obstruction or awake $PaO_2$.

  • PDF

Effects of reaction conditions on composition of the organic liquid product during the deoxygenation process of palm oil (팜유(Plam Oil)의 탈산소 공정 중 운전 조건이 생성물의 조성에 미치는 영향)

  • Kim, Sungtak;Jang, Jeong Hee;Ahn, Minhwei;Kwak, Yeonsu;Han, Gi Bo;Jeong, Byung Hun;Han, Jeong Sik;Kim, Jae-Kon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.865-875
    • /
    • 2018
  • Selection of optimum reaction conditions during deoxygenation process of palm oil is essential factor to obtain the maximum yield of bio-jet fuel. In this context, the deoxygenation of palm oil was carried out in a fixed bed reactor with an internal diameter of 1 inch loaded with a 1 wt.% $Pt/Al_2O_3$ catalyst. The composition of the organic liquid product(OLP), which can be utilized as a transportation fuel through the upgrading process, was analyzed by a gas chromatography method. The palm oil/hydrogen ratio and hydrogen pressure in the feed affected the decarboxylation(DCB) and hydrodeoxygenation(HDO) reactions, resulting in a change in the composition of the OLP. As the reaction temperature increased, the continuous cracking reaction of the deoxygenation product was promoted and the product composition in the $C_5{\sim}C_{14}$ region was increased. Thus, the results can help to understand the characteristics of deoxidation reaction of palm oil as well as the subsequent process, hydro-upgrading, to obtain the maximum yield of bio-jet fuel.

Catalytic Hydrodeoxygenation of Biomass-Derived Oxygenates: a Review (바이오매스 유래 함산소 화합물의 수첨탈산소 촉매 반응: 총설)

  • Ha, Jeong-Myeong
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.174-181
    • /
    • 2022
  • Biomass is a sustainable alternative resource for production of liquid fuels and organic compounds that are currently produced from fossil fuels including petroleum, natural gas, and coal. Because the use of fossil fuels can increase the production of greenhouse gases, the use of carbon-neutral biomass can contribute to the reduction of global warming. Although biological and chemical processes have been proposed to produce petroleum-replacing chemicals and fuels from biomass feedstocks, it is difficult to replace completely fossil fuels because of the high oxygen content of biomass. Production of petroleum-like fuels and chemicals from biomass requires the removal of oxygen atoms or conversion of the oxygen functionalities present in biomass derivatives, which can be achieved by catalytic hydrodeoxygenation. Hydrodeoxygenation has been used to convert raw biomass-derived materials, such as biomass pyrolysis oils and lignocellulose-derived chemicals and lipids, into deoxygenated fuels and chemicals. Multifunctional catalysts composed of noble metals and transition metals supported on high surface area metal oxides and carbons, usually selected as supports of heterogeneous catalysts, have been used as efficient hydrodeoxygenation catalysts. In this review, the catalysts proposed in the literature are surveyed and hydrodeoxygenation reaction systems using these catalysts are discussed. Based on the hydrodeoxygenation methods reported in the literature, an insight for feasible hydrodeoxygenation process development is also presented.

A study on rationalized values of deoxygenation coefficient for stream quality modelling in the Hwangguji stream (수질모의시 적정 탈산소계수 선정을 위한 연구 - 황구지천을 대상으로 -)

  • Noh, Huiseong;Ahn, Taejin
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • Stream water qualities have been predicted in the year 2002 and 2014 through providing the Hwangguji Stream Rectification Plan. However, the reliability of result for predicted water quality was relatively lower by applying conventional values of the parameters in model. In this study deoxygenation coefficients between Sema bridge(HGJ2) and Sujik bridge(HGJ3) have been evaluated based on the observed data of water quality and travelling time to compare with the applied value of coefficients in predicting water quality model. The values of deoxygenation coefficient $0.078day^{-1}{\sim}0.748day^{-1}$ for normal period and $0.053day^{-1}{\sim}0.505day^{-1}$ for drought period have been calculated based of observed data between Sema bridge and Sujik bridge. The values of coefficients $0.02day^{-1}{\sim}3.4day^{-1}$ have been applied in predicting water quality model in the year 2002 and $0.043day^{-1}$ 2014. Thus, the simulated results of stream water quality were better than the observed data in 2002, and worse in 2014. It has shown that values of deoxygenation coefficient should be properly estimated based on observed data to predict proper stream water quality by model.

Hypoxemia In Liver Cirrhosis And Intrapulmonary Shunt Determination Using Tc-99m-MAA Whole Body Scan (간경화 환자에서의 저산소혈증과 Tc-99m-MAA 주사를 이용한 폐내단락 측정)

  • Lee, Kye-Young;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.5
    • /
    • pp.504-512
    • /
    • 1994
  • Background: It is well known that severe hypoxemia is often associated with liver cirrhosis without preexisting cardiac or pulmonary diseases. Pulmonary vascular impairments, more specifically, intrapulmonary shunting have been considered as a major mechanism. Intrapulmonary shunting arises from pulmonary vascular dilatation at the precapillary level or direct arteriovenous communication and has relationship with the characteristic skin findings of spider angioma. However, these results are mainly from Western countries where alcoholic and primary biliary cirrhosis are dominant cuases of cirrhosis. It is uncertain that the same is true in viral hepatitiss associated liver cirrhosis, which is dominant causes of liver cirrhosis in Korea. We investigated the incidences of hypoxemia and orthodeoxia in Korean cirrhotic patients dominantly composed of postnecrotic cirrhosis and the significance of intrapulmonary shunting as the suggested mechanism of hypoxemia, Method: We performed the arterial blood gas analysis separately both at the supine and errect position in 48 stable cirrhotic patients without the evidences of severe complications such as ascites, variceal bleeding, and hepatic coma. According to the results of arterial blood gas analysis, all patients were divided into hypoxemic and normoxemic group. In each group, pulmonary function test and Tc-99m-MAA whole body scan were performed. The shunting fraction was calculated based on the fact that the sum of cerebral and bilateral renal blood flow is 32% of the systemic blood flow. Results: The hypoxemia of $PaO_2$ less than 80 mmHg was observed in 9 patients(18.8%) and Orthodeoxia more than 10 mmHg was observed in 8 patients(16.7%). But there was no patient with significant hypoxemia of $PaO_2$ less than 60 mmHg. $PaO_2$ was significantly decreased in the patients with spider angioma than the pathients without spider angioma and showed no correlation with the serologic type and severities of liver function test findings. Any parameters of pulmonary function test did not demonstrate the difference between normoxemic and hypoxemic group. But hypoxemic group showed significantly increased shunt fraction of $11.4{\pm}4.1%$ than normoxemic group of $4.1{\pm}2.0%$ (p<0.05). Conclusions: Hypoxemia is not infrequently observed complication in liver cirrhosis and intrapulmonary shunting is suggested to p1ay a major ro1e in the development of hypxemia. But there was no great likelihood of clinically significant hypoxemia in our domestic cirrhotic patients predominantly composed of postnecrotic type.

  • PDF

Fundamental Mechanisms of Platinum Catalyst for Oxygen Reduction Reaction in Fuel Cell: Density Functional Theory Approach (연료전지 산소환원반응 향상 위한 백금 촉매의 구조적 특성: 밀도범함수이론 연구)

  • Kang, Seok Ho;Lee, Chang-Mi;Lim, Dong-Hee
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.5
    • /
    • pp.242-248
    • /
    • 2016
  • The overall reaction rate of fuel cell is governed by oxygen reduction reaction (ORR) in the cathode due to its slowest reaction compared to the oxidation of hydrogen in the anode. The ORR efficiency can be readily evaluated by examining the adsorption strength of atomic oxygen on the surface of catalysts (i.e., known as a descriptor) and the adsorption energy can be controlled by transforming the surface geometry of catalysts. In the current study, the effect of the surface geometry of catalysts (i.e., strain effect) on the adsorption strength of atomic oxygen on platinum catalysts was analyzed by using density functional theory (DFT). The optimized lattice constant of Pt ($3.977{\AA}$) was increased and decreased by 1% to apply tensile and compressive strain to the Pt surface. Then the oxygen adsorption strengths on the modified Pt surfaces were compared and the electron charge density of the O-adsorbed Pt surfaces was analyzed. As the interatomic distance increased, the oxygen adsorption strength became stronger and the d-band center of the Pt surface atoms was shifted toward the Fermi level, implying that anti-bonding orbitals were shifted to the conduction band from the valence band (i.e., the anti-bonding between O and Pt was less likely formed). Consequently, enhanced ORR efficiency may be expected if the surface Pt-Pt distance can be reduced by approximately 2~4% compared to the pure Pt owing to the moderately controlled oxygen binding strength for improved ORR.

The Effects of Hypercapnia and High Flow on Cerebral Metabolism During Cardiopulmonary Bypass (심폐바이패스 시 고탄산분압과 고관류법이 뇌대사에 미치는 영향)

  • 강도균;최석철;윤영철;최국렬;정신현;황윤호;조광현
    • Journal of Chest Surgery
    • /
    • v.36 no.7
    • /
    • pp.472-482
    • /
    • 2003
  • Recent studies have demonstrated that cerebral desaturation during rewarming period of CPB was associated with postoperative neurologic dysfunction. The prevention of cerebral desaturation during CPB may reduce the incidences of neurologic and neuropsychological complications. The present study was prospectively undertaken to compare the clinical effects between two strategies (hypercapnic CPB and high flow CPB) to prevent cerebral desaturation for establishing a proper CPB technique. Material and Method: Thirty-six adult patients scheduled for elective cardiac surgery were randomized into either hypercapnic (Pa$CO_2$ 45~50mmHg, n=18) or high flow group (flow rate 2.75 L/ $m^2$/min and Pa$CO_2$ 35~40mmHg, n=18) during rewarming period of CPB. In each patient, middle cerebral artery blood flow velocity ( $V_{MCA}$), cerebral arteriovenous oxygen content difference (C(a-v) $O_2$), modified cerebral metabolic rate for oxygen (MCMR $O_2$), cerebral oxygen transport rate ( $T_{E}$ $O_2$), incidence of cerebral desaturation (internal jugular bulb blood oxygen saturation $\leq$ 50%), increased rate of S-100 $\beta$ concentration, and arterial and internal jugular bulb blood gas were measured during the five phases of the operation; Pre-CPB, CPB-10 min (steady-state CPB, nasopharyngeal temperature 29~3$0^{\circ}C$), Rewarm-1 (rewarming phase, nasopharyngeal temperature 33$^{\circ}C$), Rewarm-2 (nasopharyngeal temperature 37$^{\circ}C$), and CPB-off. Incidence of postoperative delirium and duration were assessed in all patients. All variables were compared between the two groups. Result: $V_{MCA}$ (157.88$\pm$10.87 vs 120.00$\pm$6.18%, p=0.006), internal jugular bulb $O_2$ saturation (68.01$\pm$2.75 vs 61.28$\pm$2.87%, p=0.03) and $O_2$ tension (41.01$\pm$2.25 vs 32.02$\pm$ 1,67 mmHg, p=0.03), and $T_{E}$ $O_2$(110.84$\pm$7.41 vs 81.15$\pm$8.11%, p=0.003) at rewarming periods were higher in the hypercapnic group than in the high flow group. C(a-v) $O_2$ (4.0$\pm$0.30 vs 4.84$\pm$0.38 mg/dL, p=0.04), COE (0.36$\pm$0.03 vs 0.42$\pm$0.03, p=0.04), increased rate of S- 100$\beta$ (391.67$\pm$23.40 vs 940.0$\pm$17.02%, p=0.003), and incidence of cerebral desaturation (2 vs 4 patients, p=0.04) at rewarming periods, and duration of postoperative delirium (18 vs 34 hr, p=0.02) were low in the hypercapnic group compared to the high flow group. Conclusion: These results indicate that hypercapnic CPB may provide relatively diminished cerebral injury and beneficial effects for cerebral metabolism relatively compared to high flow CPB.low CPB.

The Changes of Pulmonary Function and Systemic Blood Pressure in Patients with Obstructive Sleep Apnea Syndrome (폐쇄성 수면 무호흡증후군 환자에서 혈압 및 폐기능의 변화에 관한 연구)

  • Moon, Hwa-Sik;Lee, Sook-Young;Choi, Young-Mee;Kim, Chi-Hong;Kwon, Soon-Seog;Kim, Young-Kyoon;Kim, Kwan-Hyoung;Song, Jeong-Sup;Park, Sung-Hak
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.2
    • /
    • pp.206-217
    • /
    • 1995
  • Background: In patients with obstructive sleep apnea syndrome(OSAS), there are several factors increasing upper airway resistance and there is a predisposition to compromised respiratory function during waking and sleep related to constitutional factors including a tendency to obesity. Several recent studies have suggested a possible relationship between sleep apnea(SA) and systemic hypertension. But the possible pathophysiologic link between SA and hypertension is still unclear. In this study, we have examined the relationship among age, body mass index(BMI), pulmonary function parameters and polysomnographic data in patients with OSAS. And also we tried to know the difference among these parameters between hypertensive OSAS and normotensive OSAS patients. Methods: Patients underwent a full night of polysomnography and measured pulmonary function during waking. OSAS was diagnosed if patients had more than 5 apneas per hour(apnea index, AI). A careful history of previously known or present hypertension was obtained from each patient, and patients with systolic blood pressure $\geq$ 160mmHg and/or diastolic blood pressure $\geq$ 95mmHg were classified as hypertensives. Results: The noctural nadir of arterial oxygen saturation($SaO_2$ nadir) was negatively related to AI and respiratory disturbance index(RDI), and the degree of noctural oxygen desaturation(DOD) was positively related to AI and RDI. BMI contributed to AI, RDI, $SaO_2$ nadir and DOD values. And also BMI contributed to $FEV_1,\;FEV_1/FVC$ and DLco values. There was a correlation between airway resistance(Raw) and AI, and there was a inverse correlation between DLco and DOD. But there was no difference among these parameters between hypertensive OSAS and normotensive OSAS patients. Conclusion: The obesity contributed to the compromised respiratory function and the severity of OSAS. AI and RDI were important factors in the severity of hypoxia during sleep. The measurement of pulmonary function parameters including Raw and DLco may be helpful in the prediction and assessment of OSAS patients. But we could not find clear difference between hypertensive and normotensive OSAS patients.

  • PDF