• Title/Summary/Keyword: 탄층

Search Result 61, Processing Time 0.022 seconds

Field Tests and Analysis of Groundwater System for Stabilization of Slope in Large Open-Pit Coal Mine (대규모 노천 석탄광산의 사면 안정화를 위한 지하수 유동 체계 분석)

  • Ryu, D.W.;Kim, H.M.;Oh, J.H.;Sunwoo, C.;Jung, Y.B.
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.248-260
    • /
    • 2009
  • With regard to oversea mineral resources development, recent trend has been changed from a simple capital investment to a direct development of the resources. In relation to the stability of a slope in large open-pit coal mine, groundwater system was investigated and the validity of horizontal drainage hole was evaluated in Pasir coal mine, Indonesia. In this work, various field tests were carried out for a characterization of groundwater system, which included in-situ permeability measurement, tracer test and monitoring of groundwater levels. Especially, the influence of SM river on the characteristics of the groundwater flow system was mainly inspected. For the permeability measurement, Guelph permeameter was employed, and was found that sandstone was more permeable than mudstone and coal seam. From a comparison of lithological structure and the results of groundwater level monitoring, sandstone and thin coal seam with fractures were found to be a main channel for groundwater flow. In the results of tracer tests, the effect of SM river on the groundwater system depends on the geological structure of its base. To identify the effect of horizontal drainage holes, 2-D groundwater modeling was performed. Four different cases were tested, which are different from the length of drainage hole and the existence of pond on top of the slope. To enhance the drainage effect and slope stability, the drainage hole should be drilled to the depth of coal seam layer, which provides a main pathway of groundwater flow and embedded by sandstone. For this purpose, correct identification of surrounding geology should be preceded.

A Study on the Correlation between Coal Mining Subsidence and Underground Goaf (페탄광지역의 지반침하발생과 지하 채굴적의 상관관계 연구)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Song, Kyo-Young;Jo, Min-Jeong
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.453-464
    • /
    • 2008
  • This study is to examine a relation between coal mining subsidence occurrence at abandoned underground coal mines and underground goaf with respect to surface geology, subsurface structure, depth and thickness of coal beds and the distribution of drifts. A study is carried out at the site where susceptibility of coal mining subsidence was proven high in a previous study. In that previous study, the susceptibility of coal mining subsidence was spatially analyzed by GIS using digitized geological maps, investigation reports, digitized mining tunnel maps without consideration of subsurface structure and the multi-level arrangement of drifts. Here we analyze geological characteristics around the goaf and the distribution of coal seam based upon digitized geological maps and investigation reports on the study area. And digitized mining tunnel maps are also used to analyze the depth and multi-level arrangement of drifts. The results show that weakened surface rock strength, relatively shallow depth and large thickness of coal seam below the surface are closely related to the coal mining subsidence occurrence. Complicatedly inter-connected drifts, shallow depth of drifts and surface rock fractures are revealed as additional control factors affecting coal mining subsidence. These factors examined in this study as well as original factors should be taken into account for the quantitative estimation of coal mining subsidence occurrence at abandoned underground coal mine.

A Study on the Production Well Spacing Design Considering Coalbed Depth in Coalbed Methane Reservoirs (석탄층 메탄가스 저류층에서 탄층 심도를 고려한 생산정 간격 설계 연구)

  • Chayoung Song;Dongjin Lee;Jeonghwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.3
    • /
    • pp.98-107
    • /
    • 2023
  • This study presents a well spacing design for coalbed methane(CBM) reservoirs using the experimental results of methane gas adsorption measurement of coal samples obtained from North Kalimantan Island, Indonesia. The gas productivity analysis shows that the cumulative gas production increases as the Langmuir volume increases. This indicates that the maximum gas adsorption directly affects the gas production. In addition, the maximum gas production increases with the increase of reservoir permeability, and the dewatering period is shortened. In particular, the cumulative gas production increases as the production influence area increases. However, when comparing productivity per unit well, the maximum cumulative gas production is found between 2,000 ft of depth and 80-160 acres of the influence area. When reservoir depth and production influence area are considered simultaneously, the results of the appropriate well depth and spacing calculations show that gas productivity is highest between 600-2,000 ft. In this case, it is appropriate to design well spacing in the range of 80-160 acres. Therefore, well spacing design considering coalbed depth in undeveloped CBM reservoirs can be accomplished using gas sorption test results from coal samples.

Theoretical Potential Calculation of Coal Seam in Various Structures (복잡(複雜)한 탄층구조(炭層構造)에서의 이논전위곡선(理論電位曲線)의 계산(計算))

  • Kim, Woong-Soo;Suh, Baek-Soo
    • Journal of Industrial Technology
    • /
    • v.1
    • /
    • pp.27-33
    • /
    • 1981
  • Due to intense tectonic activities and volcanic movements, coal mines exploration have been conflicted with problems so far. In this paper, computer calculation was specially applied for various model structures of inclined, anticlined and synclined coal beds. Of all these structures, the gradient of equipotential curves showed great as the dip of coal beds increases. Especially at synclined structure, the concaves appeared sharply in both sides of equipotential curves as the dip of coal beds increases. By above results, interpretation of coal exploration can be done by comparing field data one another.

  • PDF

ON THE TECHNICAL PROBLEM IN THE SHAFT WORKS(IV) (수갱공사의 기술적 문제에 대해서(IV))

  • 이융직
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1994.03a
    • /
    • pp.89-101
    • /
    • 1994
  • 기 발표된 보문에서, 정수두압이 작용하는 수갱측벽의 두께 산정과 수갱굴하의 특성을 간략하게 설명하였다. 이 두 부문에 대해서는 계속 다루어 나갈 예정이며, 본 회부터는 수갱굴하의 원론적인 문제도 다루기도 한다. 광산이나 탄광의 수갱은, 심부에 부존하는 광체 또는 탄층에서 채굴된 광물과, 갱도굴진에서 나온 버럭을 권양하고, 작업인원, 제반 자재, 압기동력원이 되는 전기, 급수 등을 공급하여 안전한 갱내작업을 유지하기 위한 통기회로를 형성시키고, 또한 갱내수를 배출하는 다목적의 대동맥과 같은 역할을 하는, 말하자면 광산의 가장 핵심체이다. (중략)

  • PDF

A rock mass assessment procedure based on quantitative geophysical log analysis of coal measure sequences (탄층에 대한 정량적 물리검층에 기초한 암반 평가 과정)

  • Hatherly Peter;Medhurst Terry;Sliwa Renate;Turner Roland
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.112-117
    • /
    • 2005
  • Geophysical logging is routinely undertaken as part of most coal mine exploration programs. Currently, the main application for the logs is to determine coal seam depth and to qualitatively estimate coal quality, lithology, and rock strength. However, further information can be obtained, if quantitative log interpretation is made. To assist in the uptake of quantitative interpretation, we discuss log responses in terms of the mineralogy of the clastic sedimentary rocks frequently found in the Australian black coal mining areas of the Sydney and Bowen Basins. We find that the log responses can be tied to the mineralogy with reasonable confidence. Ambiguities in the interpretation will be better resolved if a full suite of logs is run. A method for checking for internal consistency, by comparing calculated and observed velocities, is also described. A key driver for quantitative interpretation is geotechnical characterisation. We propose a classification system for clastic rocks that takes into consideration physical rock properties that can be inferred from geophysical logs.

Problems in Construction of Tunnel and Rock . Slope at Mudstone and Shale Resion (이암/셰일 지역에서의 터널 및 사면 시공시의 문제점)

  • 이내용;김용일;정한중;김영근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.11b
    • /
    • pp.115-140
    • /
    • 2002
  • 이암층, 함탄층, 석회암층과 같은 특수지질불량구간에서 터널과 암반사면의 합리적인 시공을 달성하기 위해서는 먼저 대상지질에 대한 지질특성, 암반특성을 정확히 이해하는 것이 필요하며, 지반특성에 적합한 지보대책을 수립하도록 하여야 한다. 본고에서는 전형적인 퇴적암지층으로 알려진 포항지역중 중생대 퇴적암류로부터 신생대 제 3기의 미고결 퇴적암류에 이르는 다양하고 복잡한 지질구조를 이루고 있는 지역에서의 터널 및 암반사면의 시공사례를 통하여 시공중의 제반문제점을 검토하여 이암층에서의 안전하고 합리적인 터널/암반사면의 시공방안에 대하여 고찰하였다.

  • PDF

Study on the Removal Efficiency of a TEDA Impregnated Charcoal Bed for Methyliodide under Dry Condition (건조 조건하에서 TEDA주입 탄소층에 의한 Methyliodide 제거 효율에 관한 연구)

  • Won Jim Cho;Soon Heung Chang
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.80-88
    • /
    • 1984
  • The removal mechanism of air borne methyl iodide by triethylenediamine (TEDA) impregnated charcoal bed was investigated. The analysis of experimental data indicates that pore diffusion is the rate controlling step when the air velocity is over 20cm/sec, and both fore diffusion resistance and external mass transfer resistance are contributed to the overall resistance when the air velocity is 10cm/sec. The adsorption model to describe the performance of impregnated charcoal bed under dry condition where water vapors do not exist in air, is proposed. The calculated values and experimental results are well matched.

  • PDF

Removal Performance of Air Pollutants in the Flue Gas Using Various Activated Carbon Beds (활성탄층을 이용한 배출가스중 특정대기오염물질 제거 성능 연구)

  • 이숙희;고영환;이용진;동종인;김병환;박기호
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.11a
    • /
    • pp.243-244
    • /
    • 2000
  • 중금속류, VOCs 및 다이옥신류를 포함한 특정대기유해물질 처리기술은 상당히 미량의 오염물질을 처리하는 것이고 높은 처리효율을 필요로 한다. 따라서 공정 또한 일반적인 대기오염물질 처리공정의 조합을 최적화 하거나 첨가제나 반응제를 추가 투입하는 등 필요에 따라 추가적인 공정을 설치하는 것이 대부분이다. 기존 공정의 변형을 통하여 일반대기오염물질의 처리효율을 높이고 목표로 하는 특정대기오염물질을 일부 제거할 수는 있으나 다양한 특정대기오염물질을 고효율로 처리하기 위해서는 개별물질에 대한 단위장치의 개발보다는 복합적인 장치의 개발이 필요하고 또한 경제성이 있다. (중략)

  • PDF

Coalbed methane potential for Korean anthracite and possibility of its utilization (국내무연탄층에 함유된 메탄자원의 잠재력과 그 이용가능성)

  • 박석환
    • Economic and Environmental Geology
    • /
    • v.32 no.1
    • /
    • pp.113-121
    • /
    • 1999
  • Coal is both source rock and reservoir rock for the coalbed gas. Coalbed gas. Coalbed gas is predominantly methane and has a heating value of approximatly 1000 BTU/$ft^3$. Most of methane is stored in the coal as a monomolecular layer adsorbed on the internal surface of the coal matrix. The amount of methane stored in coal is related to the rank and the depth of the coal. THe higher the coal rank and the deeper the coal seam is presently buried, the greater its capacity to hold gas. Most of Korean Coal is anthracite or metaanthracite, Ro. 3.5~5.5%, and total reserves are 1.6 billion metric tons. The domestic demand for coal was drastically decreased and the rationalization policy carried out from 1987 on coal industry. Now that a large number of coal mines was closed only a few mines continued to produce not more than 5 million tons for year. It is therefore recommended to formulate a strategy to explore and exploit the resources of coalbed methane in Korea.

  • PDF