• Title/Summary/Keyword: 탄소 분말

Search Result 295, Processing Time 0.021 seconds

Density and Water Absorption Properties of Matrix Mixing with Powdered Active Carbon according to Binder Type (결합재 종류에 따른 분말활성탄소를 혼입한 경화체의 밀도 및 흡수율 특성)

  • Pyeon, Su-Jeong;Kim, Won-Jong;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.111-112
    • /
    • 2017
  • Radon has been considered the greatest source of exposure within the total radiation exposure of the human body. xposure from radon, which exists in indoor air quality, lacks public perception, Radon, which exists anywhere on earth, is not regarded as a state of attention even if it is above the average level. Indoor radon exposure situations are not intentionally introduced, and essentially the attention and responsibilities of radon exposures are assumed to be in indoor occupants. So, these are caused by common uranium and thorium scattering on Earth, and are brought into the building by fine cracks or exposed indicators of the buildings. Therefore, this study aims to reduce the risk of radon rays and reduce radon, which induces diseases caused by breathing in the body of indoor air pollutants and emitting diseases by emitting alpha rays from the radon gas.

  • PDF

On the Study Of AlSiCa($Al_2O_3-SiC-C$) refractories: (I) Synthesis of raw material using domestic chnmotte (AlSiCa($Al_2O_3-SiC-C$)계 내화물 재료에 관한 연구: (I) 국산 chamotte로부터 원료분말합성)

  • Shim, Kwang-Bo;Joo, Kyoung;Auh, Keun-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.626-631
    • /
    • 1997
  • AlSiCa powders were prepared from the domestic Hadong Kaolin ($Al_2O_3{\cdot}2SiO_2{\cdot}2H_2O$). As a result of the reaction of Hadong Kaolin and carbon powder at reducing atmosphere, $Al_2O_3{\cdot}SiC$ composite started to form at $1300^{\circ}C$ and completed at $1400^{\circ}C$. The optimum amount of carbon was 1:4 in mole ratio. It was found that only bright-green $\beta-SiC$ phase forms when the mixture was packed without carbon powder in alumina crucible.

  • PDF

Assessment of Flame Retardancy for Acrylonitrile Butadiene Styrene Containing Metal Powder and Flame Retardant (금속분말-난연제 함유 ABS의 난연 특성 평가)

  • Song, Young-Ho;Chung, Kook-Sam
    • Fire Science and Engineering
    • /
    • v.21 no.2 s.66
    • /
    • pp.30-35
    • /
    • 2007
  • The flame retardancies by the addition of metal powder and flame retardant were evaluated to present as the fundamental data to decrease the fire hazard of polymers and life losses by suffocation and poisoning. For this study, the experiments of flame retardancy were conducted as follows : weight loss rate using thermogravimetric analysis, the measurement of the limiting oxygen index(LOI) and char yield. And smoke mass concentration and CO yield were measured. Acrylonitrile butadiene styrene containing metal powder and flame retardant reduced weight loss rate and increased LOI and char yield with the decreased smoke mass concentration and CO yield. It was found that the most effective complex was tricresyl phosphate-Mo complex.

Developing Continuous Stabilization Process for Textile-Grade PAN Fiber-Based Carbon Fiber Using UV Irradiation (저가형 탄소섬유 개발을 위한 자외선 조사 기반 의류용 PAN 섬유의 연속식 안정화 공정 개발)

  • Moon, Joon Ha;Seong, Honggyu;Yoo, Jiseon;Cho, Se Youn;Choi, Jaewon
    • Journal of Powder Materials
    • /
    • v.29 no.5
    • /
    • pp.418-423
    • /
    • 2022
  • Carbon fibers (CFs) are considered promising composite materials for various applications. However, the high cost of CFs (as much as $26 per kg) limits their practical use in the automobile and energy industries. In this study, we developed a continuous stabilization process for manufacturing low-cost CFs. We employed a textile-grade polyacrylonitrile (PAN) fiber as a low-cost precursor and UV irradiation technique to shorten the thermal stabilization time. We confirmed that UV irradiation on the textile-grade PAN fibers could lower the initial thermal stabilization temperature and also lead to a higher reaction. These resulted in a shorter overall stabilization time and enhancement of the tensile properties of textile-grade PAN-based CFs. Our study found that only 70 min of stabilization time with UV irradiation was required to prepare textile-grade PAN-based low-cost CFs with a tensile strength of 2.37 ± 0.22 GPa and tensile modulus of 249 ± 5 GPa.