• Title/Summary/Keyword: 탄소전극

Search Result 561, Processing Time 0.025 seconds

Reduction and decomposition of hazardous SOx by discharge plasma with TiO2 (이산화티탄 촉매를 이용한 플라즈마 반응에 의한 SOx의 분해)

  • Woo, In-Sung;Lee, Joong-Hee;Park, Seong-Kuk;Hwang, Myong-Hwan;Kim, Byong-Suk
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.3
    • /
    • pp.135-143
    • /
    • 2010
  • 본 연구에서는 대기오염물질인 유해 황산화물 가스를 이산화티탄 촉매 반응기와 연면 방전 반응기를 조합한 반응기에서 플라즈마 방전반응에 의하여 주파수 변화, 체류시간, 전극의 굵기, 첨가 모의가스 등의 공정 변수를 변화 시켜 분해제거 실험을 하였다. 실험 결과 황산화물의 분해제거 실험에서 주파수 10kHz에서 소비전력 19W에서 분해제거율은 99%이었으며 이산화티탄 촉매반응기를 부착한 경우가 없는 경우보다 5%이상 증가효과가 이었다. 첨가가스로 메탄을 첨가한 경우 분해제거율이 증가하였고, 산소농도가 높아질수록 증가하였다 또한 이산화 탄소를 첨가한 경우 분해율은 감소하였다.

Characteristics of Hybrid-type Transparent Electrodes Fabricated by Coating Carbon Nanotubes with Conductive Polymers (탄소나노튜브 위에 전도성 고분자가 코팅된 하이브리드형 투명전극의 특성)

  • Park, Jin-Seok;Park, Jong-Seol;Kim, Bu-Jong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.36-41
    • /
    • 2019
  • Hybrid-type transparent electrodes were fabricated by depositing carbon nanotubes (CNTs) via spray coating on polyethylene terephthalate (PET) substrates and then coating the CNTs with [poly(3,4-ethylenedioxythiophene)] (PEDOT) films via electro-polymerization. For all of the fabricated electrodes, their surface morphologies, electric sheet resistances, visible transmittances, and color properties (e.g., yellowness) were characterized as functions of the applied voltages and process times used in electro-polymerization. The sheet resistance of the CNTs was significantly reduced by the coating of PEDOT, while their visible transmittances slightly decreased. The yellowness values of the PEDOT-coated CNTs were observed to have substantially decreased via electro-polymerization. The experimental results confirmed that the fabricated hybrid electrodes had desirable properties for the application of transparent electrode in terms of the electrical resistance, optical transmittance, and chromaticity.

Electrical Characteristics by Changing Binder Contents in the Carbon Counter Electrode for Dye-sensitized Solar Cells (DSSCs) (염료감응형 태양전지의 탄소대항전극 제조 시 바인더 함량 변화에 따른 전기적 특성)

  • Lee, Hyeon-Seok;Kim, Seong-Jun;Kwon, Jung-Youl;Park, Jeong-Cheol;Lee, Heon-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.4
    • /
    • pp.337-341
    • /
    • 2007
  • In this paper, we studied counter electrodes that carbon materials is used for dye-sensitized solar cells. Carbon electrodes characterized by changing of CMC wt. %. We investigated a porous structure of electrodes and a specific resistance of carbon electrodes for identification of electric conductivity. The specific resistance of carton electrodes increased by an increase of CMC wt. % and this result affected an efficiency of the cells.

Nanocarbon/silver Nanowire Hybrid Flexible Transparent Conducting Film Technology (탄소나노튜브와 은나노와이어 복합 유연투명전극 필름 기술)

  • Han, Joong Tark
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.4
    • /
    • pp.323-330
    • /
    • 2016
  • The flexible transparent conducting films (TCFs) are required to realize flexible optoelectronic devices. 1D nanomaterials such as carbon nanotubes (CNTs), metal nanowires are good candidates to replace indium tin oxide that is currently used to fabricate transparent electrode. Particularly, silver nanowires are used to produce flexible TCFs. In this review, we introduce TCF technologies based on silver nanowires/CNTs hybrid structures. CNTs can compromise drawbacks of silver nanowires for applications in high performance TCFs for optoelectronic devices.

Investigations with respect to the electrochemical properties of carbon paste electrode fabricated using polybutadiene binder (폴리부타디엔 결합재를 이용하여 만든 탄소반죽전극의 전기화학적 특성에 관한 연구)

  • Yoon, Kil-Joong
    • Analytical Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.49-54
    • /
    • 2007
  • For the practical use as a biosensor, a rubber electrode bound by polybutadiene was newly devised for the determination of hydrogen peroxide. Then its electrochemical behaviors were investigated. The signal could be obtained at low electrode potential between 0.0 ~ -0.5 V (vs. Ag/AgCl) with a detection limit of $1.4{\times}10^{-4}M$ and its potential dependence was linear in the experimental range. Especially its Lineweaver-Burk plot showed a very good linearity giving the evidence of a good enzyme immobilization on the surface of the electrode. And mechanical stability of the electrode resulted from using rubber binder presented a new possibility for the practical use of biosensor.

PWSCC of Alloy 600 components in PWRs-Part 1 (원자력 발전소 Alloy 600 부품의 PWSCC-Part 1)

  • Hwang, Seong Sik
    • CORROSION AND PROTECTION
    • /
    • v.12 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Alloy 600 재료의 PWSCC의 개념을 소개하고 그 발생과 전파에 미치는 미세조직, 온도, 응력, 수화학 환경등의 주요인자를 정리하였다. ◯ PWSCC란 니켈 기지 합금인 Alloy 600와 그 용접재인 Alloy 82/182 재료가 원자로 1차수 환경에서 보이는 응력부식균열을 의미한다. ◯ Alloy 600의 PWSCC에 미치는 주요 인자에는 재료의 미세조직, 응력, 온도, 환경등이 있으며 그 중에서 재료의 미세조직이 가장 지배적인 인자이다. ◯ 재료내의 탄화물은 탄소 함량과 열처리 조건에 따라 달리 형성되며 입계를 따라 준연속적으로 잘 발달된 입계탄화물을 가지는 재료가 PWSCC에 저항성을 가진다. ◯ 손상속도는 부가 응력의 네 제곱에 비례하여 증가하는 것으로 알려져 있다. ◯ PWSCC는 Arrhenius 관계의 열활성화 과정(thermally activated process)이다. ◯ 용존수소량에 따라 재료의 부식전위가 정해지는데 전극전위가 Ni/NiO 평형전위 부근에서 가장 큰 균열 성장 민감도를 보인다는 데는 연구자들 사이에 이견이 없다. 그러나 균열의 개시에 대한 용존수소량의 영향에 대해서는 이견이 있다.

Electrochemistry for Redox Polymer Film of N,N'-bis(3-pyrrol-1-yl-propyl)-4,4'-bipyridinium Ion (N,N'-bis(3-pyrrol-1-yl-propyl)-4,4'-bipyridinium이온의 산화-환원 고분자 피막에 대한 전기화학)

  • Cha, Seong-Keuck
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.6-14
    • /
    • 2001
  • The monomer N,N'-bis(3-pyrrol-1-yl-propyl)-4,4'-bipyridinium$(PF_6)_2$ was electrochemically polymerized on glassy carbon electrode surface. This polymer film electrode has electroactive sites on its bipyridinium ions distributed at the polymer strands. The formal potentials of the electrodes were -0.41V and -0.81V(vs. SSCE) for each step at phosphate buffer(pH=5.70). The diffusion coefficients of the dopants ions into the polymer matrix were $1.57{\times}10^{-4}$ and $4.35{\times}10^{-5}cm^2s^{-1}$ for first and second redox couple, respectively. The rate constants of electron transfer at $V^{2+/+}$ of the first step was a $57.53s^{-1}$, which was 22 times higher than $V^{+/0}$ one having $2.63s^{-1}$ in the solution. The charge transfer resistance of the polymer film was influenced by the dopant ion of the electrolyte. Thus the resistances were 22.63, 16.81, 12.44 and $11.36k{\Omega}$ for $LiClO_4,\;NaClO_4,\;KClO_4$, and phosphate buffer, respectively. The reaction order of the electropolymerization was first order and the rate constant of the polymerization was $1.31{\times}10^{-1}s^{-1}$ as determined by EQCM method. The G.C./p-BPB type electrode doped with phosphate ions showed a stability and reproducibility in CV procedure over 20 cycles.

  • PDF

Electrochemical Detection of Uric Acid using Three Osmium Hydrogels (세개의 오스뮴 고분자를 이용한 요산의 전기화학적 측정방법)

  • Jeon, Won-Yong;Choi, Young-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.2
    • /
    • pp.29-38
    • /
    • 2016
  • Screen printed carbon electrodes (SPCEs) with immobilized osmium-based hydrogel redox polymer, uricase and PEGDGE can be used to apply uric acid electrochemical detecting. The osmium redox complexes were synthesized by the coordinating pyridine group having different functional group at 4-position with osmium compounds. The synthesized poly-osmium hydrogel complexes are described as PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$, PAA-PVI-$[Os(dme-bpy)_2Cl]^{+/2+}$, PAA-PVI-$[Os(dmo-bpy)_2Cl]^{+/2+}$. The different concentrations of uric acid were measured by cyclic voltammetry technique using enzyme-immobilized SPCEs. The prepared SPCEs using PAA-PVI-$[Os(dme-bpy)_2Cl]^{+/2+}$ showed no interference from common physiologic interferents such as ascorbic acid (AA) or glucose. The resulting electrical currents at 0.33 V vs. Ag/AgCl displayed a good linear response with uric acid concentrations from 1.0 to 5.0 mM. Therefore, this approach allowed the development of a simple, point of care in the medical field, disposable electrochemical uric acid biosensor.

Effects of PtMn composition on carbon supported PtMn catalysts for PEMFC (Mn조성비(組成比)가 PEMFC용(用) Pt/C 전극촉매(電極觸媒) 특성(特性)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Yoo, Sung-Yeol;Kang, Suk-Min;Lee, Jin-A;Rhee, Choong-Kyun;Ryu, Ho-Jin
    • Resources Recycling
    • /
    • v.21 no.2
    • /
    • pp.34-40
    • /
    • 2012
  • $Pt_{10}$/C, $Pt_9Mn_1$/C, $Pt_7Mn_3$/C electrocatalysts for Polymer Electrolyte Membrane Fuel Cells(PEMFCs) were synthesized by reduction with HCHO and their activity as a oxygen reduction reaction(ORR) was examined at half cell. The electrochemical oxygen reduction reaction(ORR) was studied by using a glaasy carbon electrode through cyclic voltammetric curves(CV) in a 1 M $H_2SO_4$ solution. The ORR activities of $Pt_9Mn_1$/C were higher than $Pt_{10}$/C, $Pt_7Mn_3$/C. Also potential-current curves of $Pt_9Mn_1$/C at 0.9, 0.8, 0.7, 0.6V for 5minutes respectively were higher than $Pt_{10}$/C, $Pt_7Mn_3$/C. Physical characterization was made by using x-ray diffraction(XRD) and transmission electron microscope(TEM). The TEM images of $Pt_9Mn_1$/C, $Pt_{10}$/C catalysts showed homogenous particle distribution with particle size of about 2.7 nm, 3 nm respectively and then the XRD results showed that the crystalline structure of the synthesized catalysts are seen FCC structure.

Development of Capacitive Type Humidity Sensor using Polyimide as Sensing Layer (폴리이미드를 감지층으로 이용한 정전용량형 습도센서 개발)

  • Hong, Soung-Wook;Kim, Young-Min;Yoon, Young-Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.366-372
    • /
    • 2019
  • In this paper, we fabricated a capacitive humidity sensor with an IDT(Interdigitated) electrode using commercial polyimide containing fluorine, and its properties were measured and analyzed. First, in order to analyze the composition of commercial polyimide, EDS analysis was performed after patterning process on a silicon wafer. The area of the humidity sensor was $1.56{\times}1.66mm^2$, and the width of the electrode and the gap between the electrodes were $3{\mu}m$ each. The number of electrodes was 166 and the length of the electrode was 1.294mm for the sensitivity of the sensor. The fabricated sensor showed that the sensitivity was 24 fF/%RH, linearity <${\pm}2.5%RH$ and hysteresis <${\pm}4%RH$. As a result of measuring the capacitance value according to the frequency change, the capacitance vlaue decreased with increasing frequency. Capacitance deviations with 10kHz and 100kHz were measured as 0.3pF on average.