Nanocarbon/silver Nanowire Hybrid Flexible Transparent Conducting Film Technology

탄소나노튜브와 은나노와이어 복합 유연투명전극 필름 기술

  • Han, Joong Tark (Nano Hybrid Technology Research Center, Korea Electrotechnology Research Institute)
  • 한중탁 (한국전기연구원 나노융합기술연구센터)
  • Received : 2016.07.15
  • Accepted : 2016.07.29
  • Published : 2016.08.31


The flexible transparent conducting films (TCFs) are required to realize flexible optoelectronic devices. 1D nanomaterials such as carbon nanotubes (CNTs), metal nanowires are good candidates to replace indium tin oxide that is currently used to fabricate transparent electrode. Particularly, silver nanowires are used to produce flexible TCFs. In this review, we introduce TCF technologies based on silver nanowires/CNTs hybrid structures. CNTs can compromise drawbacks of silver nanowires for applications in high performance TCFs for optoelectronic devices.


  1. J. -Y. Lee, S. T. Connor, Y. Cui, P. Peumans, Solution-processed metal nanowire mesh transparent electrodes, Nano Lett. 8 (2008) 689-692.
  2. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, Silver nanowire networks as flexible transparent, conducting films: Extremely high DC to optical conductivity ratios. ACS Nano 3 (2009) 1767-1774.
  3. K. Ellmer, Past achievements and future challenges in the development of optically transparent electrodes. Nature Photon. 6 (2012) 809-817.
  4. R. M. Mutiso, M. C. Sherott, A. R. Rathmell, B. J. Wiley, K. I. Winey, Integrating simulations and experiments to predict sheet resistance and optical transmittance in nanowire films for transparent conductors, ACS Nano 7 (2013) 7654-7663.
  5. L. Hu, D. S. Hecht, G. Gruner, Percolation in transparent and conducting carbon nanotube Networks. Nano Lett. 4 (2004) 2513-2517.
  6. B. Dan, G. C. Irvin, M. Pasquali, Continuous and scalable fabrication of transparent conducting carbon nanotube films. ACS Nano 3 (2009) 835-843.
  7. P. N. Nirmalraj, P. E. Lyons, S. De, J. N. Coleman, J. J. Boland, Electrical conductivity in single-walled carbon nanotube networks. Nano Lett. 9 (2009) 3890-3895.
  8. J. T. Han, J. S. Kim, H. D. Jeong, H. J. Jeong, S. Y. Jeong, G. -W. Lee, Modulating conductivity, environmental stability of transparent conducting nanotube films on flexible substrates by interfacial engineering. ACS Nano 4 (2010) 4551-4558.
  9. J. Zhao, H. Sun, S. Dai, Y. Wang, J. Zhu, Electrical breakdown of nanowires, Nano Lett. 11 (2011) 4647-1651.
  10. H. H. Khaligh, I. A. Goldthorpe, Failure of silver nanowire transparent electrodes under current flow. Nanoscale Res. Lett. 8 (2013) 235/1-6.
  11. T. Tokuno, M. Nogi, J. Jiu, K. Suganuma, Hybrid transparent electrodes of silver nanowires and carbon nanotubes: a low-temperature solution process. Nanoscale Res. Lett. 7 (2012) 281/1-7.
  12. D. Kim, L. Zhu, D. -J. Jeong, K. Chun, Y. -Y. Bang, S. -R. Kim, J. -H. Kim, S. -K. Oh, Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires. Carbon 63 (2013) 530-536.
  13. Y. Ahn, Y. Jeong, Y. Lee, Improved thermal oxidation stability of solution-processable silver nanowire transparent electrode by reduced graphene oxide, ACS Appl. Mater. & Interf. 4 (2012) 6410-6414.
  14. I. N. Khomanov, S. H. Dominues, H. Chou, X. Wang, C. Tan, J. -Y. Kim, H. Li, R. Piner, A. J. G. Zarbin, R. S. Ruoff, Reduced graphene oxide/ copper nanowire hybrid films as high-performance transparent electrodes. ACS Nano 7 (2013) 1811-1816.
  15. H. -W. Tien, S. -T. Hsiao, W. -H. Liao, Y. -H. Yu, F. -C. Lin, Y. -S. Wang, S. -M. Li, C. -C. M. Ma, Using self-assembly to prepare a graphenesilver nanowire hybrid film that is transparent and electrically conductive. Carbon 58 (2013) 198-207.
  16. Y. Liu, Q. Chang, L. Huang, Transparent, flexible conducting graphene hybrid films with a subpercolating network of silver nanowires. J. Mater. Chem. C 1 (2013) 2970-2974.
  17. M. -S. Lee, K. Lee, S. -Y. Kim, H. Lee, J. Park, K. -H. Choi, H. -K. Kim, D. -G. Kim, D. -Y. Lee, S. W. Nam, J. -U. Park, High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 13 (2013) 2814-2821.
  18. I. K. Moon, J. I. Kim, H. Lee, K. Hur, W. C. Kim, H. Lee, 2D graphene oxide nanosheets as an adhesive over-coating layer for flexible transparent conductive electrodes. Sci. Rep. 3 (2013) 1112/1-7.
  19. R. Chen, S. R. Das, C. Jeong, M. R. Khan, D. B. Janes, M. A. Alam, Co-percolating graphenewrapped silver nanowire network for high performance, highly stable transparent conducting electrodes. Adv. Func. Mater. 23 (2013) 5150-5158.
  20. T. Y. Kim, Y. W. Kim, H. S. Lee, H. Kim, W. S. Yang, K. S. Suh, Uniformly interconnected silver-nanowire networks for transparent film heaters. Adv. Func. Mater. 23 (2013) 1250-1255.
  21. K. Zilberberg, F. Gasse, R. Paqui, A. Polywka, A. Behrendt, S. Trost, R. Heiderhoff, P.. Gorrn, T. Riedl, Highly robust indium-free transparent conductive electrodes based on composites of silver nanowires and conductive metal oxide. Adv. Func. Mater. 24 (2013) 1671-1678.
  22. R. Zhu, C. -H. Chung, K. C. Cha, W. Yang, Y. B. Zheng, H. Zhou, T. -B. Song, C. -C. Chen, P. S. Weiss, G. Li, Y. Yang, Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors. ACS Nano 5 (2011) 9877-9882.
  23. A. Kim, Y. Won, K. Woo, C. -H. Kim, J. Moon, Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells. ACS Nano 7 (2013) 1081-1091.
  24. P. Lee, J. Ham, J. Lee, S. Hong, S. Han, Y. D. Suh, S. E. Lee, J. Yeo, S. S. Lee, D. Lee, S. H. Ko, Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite, Adv. Func. Mater. 24 (2014) 5671- 5678.
  25. J. Lee, J. Y. Woo, J. T. Kim, B. Y. Lee, C. -S. Han, Synergistically Enhanced stability of highly flexible silver nanowire/carbon nanotube hybrid transparent electrodes by plasmonic welding, ACS Appl. Mater. Interfaces 6 (2014) 10974-10980.
  26. J. S. Woo, J. T. Han, S. Jung, J. I. Jang, H. Y. Kim, H. J. Jeong, S. Y. Jeong, K. -J. Baeg, G. -W. Lee, Electrically Robust Metal Nanowire Network Formation by In-Situ Interconnection with Single-Walled Carbon Nanotubes, Sci. Rep. 4 (2014) 4801/1-6.