• Title/Summary/Keyword: 탄소입자

Search Result 643, Processing Time 0.027 seconds

Characteristic of Size-Resolved Water-Soluble Organic Carbon in Atmospheric Aerosol Particles Observed during Daytime and Nighttime in an Urban Area (도시지역 낮.밤 대기에어로졸의 입경 별 수용성 유기탄소의 특성)

  • Park, Seung Shik;Shin, Dong Myung
    • Particle and aerosol research
    • /
    • v.9 no.1
    • /
    • pp.7-21
    • /
    • 2013
  • Twelve-hour size-resolved atmospheric aerosols were measured to determine size distributions of water-soluble organic carbon(WSOC) during daytime and nighttime, and to investigate sources and formation pathways of WSOC in individual particle size classes. Mass, WSOC, ${NO_3}^-$, $K^+$, and $Cl^-$ at day and night showed mostly bimodal size distributions, peaking at the size range of $0.32-0.55{\mu}m$(condensation mode) and $3.1-6.2{\mu}m$(coarse mode), respectively, with a predominant condensation mode and a minor coarse mode. While ${NH_4}^+$ and ${SO_4}^{2-}$ showed unimodal size distributions which peaked between 0.32 and $0.55{\mu}m$. WSOC was enriched into nuclei mode particles(< $0.1{\mu}m$) based on the WSOC-to-mass and WSOC-to-water soluble species ratios. The sources and formation mechanisms of WSOC were inferred in reference to the size distribution characteristics of inorganic species(${SO_4}^{2-}$, ${NO_3}^-$, $K^+$, $Ca^{2+}$, $Na^+$, and $Cl^-$) and carbon monoxide. Nuclei mode WSOC was likely associated with primary combustion sources during daytime and nighttime. Among significant sources contributing to the condensation mode WSOC were homogeneous gas-phase oxidation of VOCs, primary combustion emissions, and fresh(or slightly aged) biomass burning aerosols. The droplet mode WSOC could be attributed to aqueous oxidation of VOCs in clouds, cloud-processed biomass burning aerosols, and small contributions from primary combustion sources. From the correlations between WSOC and soil-related particles, and between WSOC and sea-salt particles, it is suggested that the coarse mode WSOC during daytime is likely to condense on the soil-related particles($K^+$ and $Ca^{2+}$), while the WSOC in the coarse fraction during nighttime is likely associated with the sea-salt particles($Na^+$).

Efficient Anaerobic Digestion for Highly Concentrated Particulate Organic Wastewater (고농도 입자성 유기폐수의 고효율 혐기성 소화 공정)

  • Lee, Sungbum;Shin, Kyuchul;Kim, Huijoo;Kim, Hyunju;Choi, Changkyoo;Kim, Moonil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.23-29
    • /
    • 2008
  • It has been mentioned that CSTR (Completely Stirred Tank Reactor) and UASB (Upflow Anaerobic Sludge Blanket) processes, the existing anaerobic processes, have problems in the treatment of highly concentrated particulate organic wastewater (HCPOW). Therefore, this paper discusses the treatment possibility of distillery wastewater which is a typical HCPOW using ADEPT (anaerobic Digestion Elutriated Phased Treatment) process. In the comparison of CSTR and ADEPT, ADEPT produced much higher gas than that of CSTR removing more organic matters and suspended solids in ADEPT process, ADEPT had no effect on the decrease in pH by volatile fatty acids and showed steady pH in spite of relatively short HRT. In the results of removal rate according to recycle ratios between 6Qin and 2Qin in ADEPT, 6Qin showed high removal rate during the operation time. Therefore it appears that ADEPT had an applicability for the treatment of distillery wastewater. ADEPT could be a economical process, due to the short HRT, the energy recovery by the methane production, and the utilization for carbon source of produced organic acid from the ADEPT-acid reactor.

  • PDF

Improvement in Sensitivity of Electrochemical Glucose Biosensor Based on CuO/Au@MWCNTs Nanocomposites (CuO/Au@MWCNTs 나노복합재 기반 전기화학적 포도당 바이오센서의 민감도 개선)

  • Park, Mi-Seon;Bae, Tae-Sung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.145-152
    • /
    • 2016
  • In this study, CuO was introduced on MWCNTs dispersed with Au nanoparticles to improve the glucose sensing capability of electrochemical biosensors. Nano-cluster shaped CuO was synthesized due to the presence of Au nanoparticle, which affects glucose sensing performance. The biosensor featuring CuO/Au@MWCNTs nanocomposite as an electrode material when 0.1 mole of CuO was synthesized showed the highest sensitivity of $504.1{\mu}A\;mM^{-1}cm^{-2}$, which is 4 times better than that of MWCNTs based biosensors. In addition, it shows a wider linear range from 0 to 10 mM and lower limit of detection (LOD) of 0.008 mM. These results demonstrate that CuO/Au@MWCNTs nanocomposite sensors are superior to other CuO based biosensors which are attributed that the nano-cluster shaped CuO is favorable for the electrochemical reaction with glucose molecules.

Removals of 1-Naphthol in Aqueous Solution Using Alginate Gel Beads with Entrapped Birnessites (버네사이트를 고정화한 알긴산 비드(Bir-AB)를 이용한 수용액 중 1-Naphthol의 제거)

  • Eom, Won-Suk;Lee, Doo-Hee;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.4
    • /
    • pp.247-256
    • /
    • 2013
  • In this study, alginate beads containing birnessite (Bir-AB), a highly reactive oxidative catalyst for the transformation of phenolic compounds, was prepared and its 1-naphthol (1-NP) removal efficiency was investigated in a batch test. Based on scanning electron microscopy image, it can be inferred that the alginate gel cluster acts as a bridge which bind the birnessite particles together. Kinetic experiment with Bir-AB of different mixing ratios of birnessite to alginate (Bir : AG=0.25 : 1~1 : 1 w/w) indicate that pseudo-first order kinetic constants, $k(hr^{-1})$ for the 1-NP removals increased about 1.5 times when the birnessite mixing ratio was doubled. The removals of 1-NP was found to be dependent on solution pH and the pesudo-first order rate constants were increased from 0.331 $hr^{-1}$ at pH 10 to 0.661 $hr^{-1}$ at pH 4. The analysis of total organic carbon for the reaction solutions showed that a higher removal of dissolved organic carbon was achieved with Bir-AB as compared to birnessite. HPLC chromatographic analysis of the methanol extract after reaction of 1-NP with Bir-AB suggest that the reaction products could be removed through incorporation into the aliginate beads as a bound residue. Mn ions produced from the oxidative transformation of 1-NP by birnessite were also removed by sorption to Bir-AB. The Bir-AB was recovered quantitatively by simple filtration and was reused twice without significant loss of the initial reactivity.

Nanophase Catalyst Layer for Direct Methanol Fuel Cells

  • Chang Hyuk;Kim Jirae
    • Journal of the Korean Electrochemical Society
    • /
    • v.4 no.4
    • /
    • pp.172-175
    • /
    • 2001
  • Nanophase catalyst layer for direct methanol fuel cell has been fabricated by magnetron sputtering method. Catalyst metal targets and carbon were sputtered simultaneously on the Nafion membrane surface at abnormally higher gas (Ar/He mixture) pressure than that of normal thin film processing. They could be coated as a novel structure of catalyst layer containing porous PtRu or Pt and carbon particles both in nanometer range. Membrane electrode assembly made with this layer led to a reduction of the catalyst loading. At the catalyst loading of 1.5mg $PtRu/cm^2$ for anode and 1mg $Pt/cm^2$ for cathode, it could provide $45 mW/cm^2$ in the operation at 2 M methanol, 1 Bar Air at 80"C. It is more than $30\%$ increase of the power density performance at the same level of catalyst loading by conventional method. This was realized due to the ultra fine particle sizes and a large fraction of the atoms lie on the grain boundaries of nanophase catalyst layer and they played an important role of fast catalyst reaction kinetics and more efficient fuel path. Commercialization of direct methanol fuel cell for portable electronic devices is anticipated by the further development of such design.

Biological Pump in the East Sea Estimated by a Box Model (상자 모형으로 추정한 동해의 생물 펌프)

  • Kim, Jae-Yeon;Kang, Dong-Jin;Kim, Eung;Cho, Jin-Hyung;Lee, Chang-Rae;Kim, Kyung-Ryul;Lee, Tong-Sup
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.295-306
    • /
    • 2003
  • Recently efforts are underway to analyze the impacts of anthropogenic $CO_2$ on the global environments and the amount of oceanic uptake increase. The East Sea is now viewed as a miniature ocean because its circulation pattern is similar to the ocean conveyer belt. The biological pump of the East Sea is a vital component to understand the carbon cycle quantitatively. In this paper, the biological pump is estimated utilizing the stoichiometric ratio between carbon and phosphorus. A simple phosphate budget model is constructed based on the seawater and dissolved oxygen box model that can simulate the recent structural change in deep water circulation of the East Sea. A model run from you 1952 to 2040 shows the steadily intensifying biological pump. Currently it exports about 0.016 Pg C yr$^{-1}$ , which corresponds to 35% of the carbon introduced into the seawater by the air-sea exchange. An increased oxygen supply to the central water mass as a result of from the transition in the ventilation system might enhance the remineralization of sinking biogenic particles. This should strengthen the upward nutrient flux into the surface layer. Consequently, the biological sequestration of anthropogenic carbon is expected to increase with time. The estimated biological uptake of the anthropogenic carbon in the East Sea since the Industrial Revolution is estimated as 0.025 Pg C.

Manufacturing Characteristics of Black Burnished Pottery from Pungnaptoseong, Beakje (백제 풍납토성 출토 흑색마연토기의 제작 특성)

  • Kim, Su Kyoung;Han, Min Su;Nam, Sang Won;Jang, Sungyoon
    • Journal of Conservation Science
    • /
    • v.33 no.6
    • /
    • pp.417-429
    • /
    • 2017
  • This study aimed at the identification of the black coating materials on the pottery surface and manufacturing technique of black burnished pottery excavated from the Pungnaptoseong, Seoul, which is estimated to be royal fortress of Beakje. According to observation of black coated surface and raw materials, potteries can be divided into two groups. The first group potteries have black inner and black surface with well-selected particles. Second group potteries are black in surface only with unevenly selected particles. Each group seems to represent different manufacturing technique in clay selection, color development timing and method. The black burnished pottery contains high values of CaO, $P_2O_5$, L.O.I. and lower content of $Fe_2O_3$ compared with gray pottery excavated from the same site, which indicates plant ashes were used for coloring the surface of pottery in black. According to the result of SEM-EDS mapping of black burnished pottery, carbon was concentrated on pottery surface, while iron was concentrated on the surface of the gray pottery. Based on XRD analysis, firing temperature of the black burnished potteries were fired low temperature range at 700 to $900^{\circ}C$, and that of the gray potteries ranged from $900^{\circ}C$ to $1000^{\circ}C$.

Distribution Characteristics of Polychlorinated Biphenyls in Sediments inside Jeju Harbor (제주항내 퇴적물의 PCBs 분포특성)

  • Heo, Ryun-Yong;Kam, Sang-Kyu;Cho, Eun-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.220-227
    • /
    • 2016
  • In this paper, polychlorinated biphenyls (PCBs) were measured in surface sediments collected three times (June, October, December, 2013), inside Jeju Harbor as major harbors of Jeju Island. The concentration of PCBs inside Jeju Harbor was in the range of 1.62~4.45 (mean) ng/g on a dry weight basis and the levels were very low. In the analysis of PCBS homologue patterns, high-chlorinated PCB congeners were dominant in surface sediments inside Jeju Harbor, indicating that their sources were originated from shipping activity. In the relationships between PCBs concentrations and particle size (mud, sand and gravel) in surface sediments, PCBs concentrations were higher in the sediments with higher mud content, indicating that higher PCBs were distributed with increasing sediments of fine gradules. The PCBs concentrations in surface sediments in this study were very low, compared with ER-L (effect range-low) and TEL (threshold effects level) among sediment quality guideleines (SQGs) applied in foreign countries, such as USA, Canada, and Australia, etc), indicating that their biological effects on the bottom organisms in marine environment were expected to be very low.

Composition and Surface Analyses of RGP Contact Lenses (RGP 콘택트렌즈의 성분과 표면 분석)

  • Jang, Jun-Kyu;Shin, Hyung-Sup
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.4
    • /
    • pp.329-337
    • /
    • 2010
  • Purpose: The surfaces and compositions of rigid gas permeable (RGP) contact lenses were analyzed with the consistent methods, and the basic informations for the composition design of lens materials were suggested. Methods: The bulk structures were analyzed by using Fourier infrared spectroscopy (FTIR), the compositions of surface components were observed by using x-ray photoelectron spectroscopy (XPS), the surface morphology and roughness were observed using atomic force microscopy (AFM), and the wettabilities were estimated by the surface wetting angles. The relations and trends of those results were analyzed. Results: The high oxygen permeability RGP lenses showed the trend that the fluorine decreases and the silicon increases. As the silicon and fluorine contents increased, the carbon and oxygen contents of RGP lens materials decreased at a constant ratio. The decreasing ratio of the carbon contents was three times larger than the decreasing ratio of oxygen contents. The composition of the surface treated lens was far from these tendency line. When the silicon contents increased, the rough surface was formed with the cohered particles. When the fluorine contents increased, the rough surface was formed with the deep flaws. The surface roughness increased and then wettabilities decreased as the silicon and fluorine contents increased. For the surface roughness changes, the increasing ratio of the silicon contents was two times larger than the increasing ratio of fluorine contents. The surface of RGP lens materials appeared the hydrophobic character of which the wettabilities decreased when the roughnesses increased. Conclusions: The surfaces and compositions of RGP contact lenses were measured by the same methods. Those results and relationships were compared and analysed. It is considered that these research results will be applied with the basic data for the composition design of lens materials.

Evaluation of MWCNT Exposure and the Wear Characteristics of MWCNT-containing PC/ABS Composites (다중벽 탄소나노튜브를 함유한 PC/ABS 복합재의 마모 특성 및 다중벽 탄소나노튜브의 유출 평가)

  • Lee, Hyun-Woo;Kim, Kyung-Shik;Lee, Jae-Hyeok;Kim, Hyo-Sop;Kim, Jae-Ho;Oh, Dong-Hoon;Ryu, Sang-Hyo;Jang, Young-Chan;Kim, Jae-Hyun;Lee, Hak-Joo;Kim, Kwang-Seop
    • Tribology and Lubricants
    • /
    • v.30 no.5
    • /
    • pp.278-283
    • /
    • 2014
  • Carbon nanotubes (CNTs) are used in various composite materials to enhance electrical, thermal and mechanical properties of composite materials. In this study, we investigate the wear characteristics of polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) blends containing multi-walled carbon nanotubes (MWCNTs). PC/ABS blends are commonly used in many industrial applications such as cellular phones and display cases and MWCNTs have been added to the PC/ABS blends to improve their electromagnetic interference shielding (EMS). We performed wear tests on PC/ABS blends containing MWCNTs under reciprocating linear sliding conditions with chrome steel balls as a counterpart material. The normal loads were 10, 30, 50, 70, 100 N, the sliding speed was 10 mm/s, the stroke length was 15 mm, and the tests lasted 900 s. The MWCNTs included in the PC/ABS blends lower the wear volume and friction coefficient of the composites. We analyzed the wear debris collected from the composites during the tests in terms of the MWCNT concentration using inductively coupled plasma optical emission spectroscopy. The results show that the quantity of MWCNTs in the debris is proportional to the concentration of MWCNTs in the composite, indicating that the exposure of the MWCNTs to environments by wear could be increased with their concentration in the composite.