Composition and Surface Analyses of RGP Contact Lenses

RGP 콘택트렌즈의 성분과 표면 분석

  • Received : 2010.10.18
  • Accepted : 2010.12.18
  • Published : 2010.12.31

Abstract

Purpose: The surfaces and compositions of rigid gas permeable (RGP) contact lenses were analyzed with the consistent methods, and the basic informations for the composition design of lens materials were suggested. Methods: The bulk structures were analyzed by using Fourier infrared spectroscopy (FTIR), the compositions of surface components were observed by using x-ray photoelectron spectroscopy (XPS), the surface morphology and roughness were observed using atomic force microscopy (AFM), and the wettabilities were estimated by the surface wetting angles. The relations and trends of those results were analyzed. Results: The high oxygen permeability RGP lenses showed the trend that the fluorine decreases and the silicon increases. As the silicon and fluorine contents increased, the carbon and oxygen contents of RGP lens materials decreased at a constant ratio. The decreasing ratio of the carbon contents was three times larger than the decreasing ratio of oxygen contents. The composition of the surface treated lens was far from these tendency line. When the silicon contents increased, the rough surface was formed with the cohered particles. When the fluorine contents increased, the rough surface was formed with the deep flaws. The surface roughness increased and then wettabilities decreased as the silicon and fluorine contents increased. For the surface roughness changes, the increasing ratio of the silicon contents was two times larger than the increasing ratio of fluorine contents. The surface of RGP lens materials appeared the hydrophobic character of which the wettabilities decreased when the roughnesses increased. Conclusions: The surfaces and compositions of RGP contact lenses were measured by the same methods. Those results and relationships were compared and analysed. It is considered that these research results will be applied with the basic data for the composition design of lens materials.

목적: RGP 콘택트렌즈들의 성분과 표면을 일관된 방법으로 분석하여, RGP 렌즈 재료의 성분 설계에 기본 정보를 제시하고자 하였다. 방법: 렌즈 재료의 구조는 적외선분광(FTIR), 표면 조성은 X-선 광전자분광(XPS), 표면의 형상과 거칠기는 원자현미경(AFM), 습윤성은 접촉각으로 평가하였으며, 상호관계와 경향을 분석하였다. 결과: 산소투과성이 높은 RGP 렌즈들은 불소를 줄이고, 실리콘의 양을 증가시키는 경향을 나타냈다. RGP 렌즈들의 재료는 실리콘과 불소의 증가에 따라 일정한 비율로 탄소와 산소가 감소하였으며, 탄소의 감소가 산소보다 3배 크게 나타났다. 그리고 표면처리가 된 재료는 탄소와 산소가 조성 변화 추세선에서 떨어져 있었다. 실리콘이 증가하면 미세입자의 응집이, 불소의 양이 증가하면 깊은 홈이 나는 형태로 표면이 거칠어졌으며, 거칠기에 대한 영향은 실리콘이 더 컸다. 실리콘과 불소가 증가하면 습윤성이 감소했는데, 실리콘에 의한 영향이 2배 크게 나타났다. RGP 렌즈 재료는 표면이 거칠어지면 습윤성이 감소하는 소수성의 형태를 나타냈다. 결론: RGP 렌즈들의 성분과 표면을 동일한 방법으로 측정하고, 상호관계를 분석하였다. 따라서 이 연구는 RGP 렌즈 재료의 성분 설계에 대한 기초 자료로 활용할 수 있을 것으로 사료된다.

Keywords

References

  1. Whitford M. J., "The chemistry of silicone materials for biomedical devices and contact lenses", Biomaterials, 5(5):298-300(1984). https://doi.org/10.1016/0142-9612(84)90077-2
  2. Bennett E. S. and Weissman B. A., "Clinical contact lens practice", Lippincoott Williams & Wilkins, Philadelphia, pp. 243-253(2005).
  3. Loveridge R., "What's new in the world of RGPs?", Optometry Today, pp. 34-39(may 21, 2004).
  4. Chapoy L. L. and Lally J. M., "The property driven innovation of materials for use in ophthalmology", Key Engineering Materials, 380:149-166(2008).
  5. French K., "Contact lens material properties: Part 3-Oxygen performance", Optician, 230(6030):16-21(2005).
  6. Hom M. M., "Manual of contact lens prescribing and filting with CD-ROM", 3rd Ed., Elsevier, Philadelphia, pp. 203-211(2006).
  7. Young R., and Tapper T., "Contact lenses: plasma surface treatment", Optician, 48-52(june 7, 2001).
  8. Chu P. K., Chen J. Y., Wang L. P., and Huang N., "Plasma-surface modification of biomaterials", Materials Science and Engineering, R 36:143-206(2002). https://doi.org/10.1016/S0927-796X(02)00004-9
  9. Grobe III G. L., "Surface treatment of fluorinated contact lens materials", U.S. Patent 7094458 B2, 2006.
  10. Port M. J. A., "Contact lens surface properties and interactions", Optometry Today, 27-35(july 30, 1999).
  11. French K., "Contact lens material properties: Part I - Wettability", Optician, 230(6022):20-28(2005).
  12. Ren L., Yin S. H., Zhao L. N., Wang Y. J., Chen H., and Qu J., "Study on the surface of fluorosilicone acrylate RGP contact lens treated by low-temperature nitrogen plasma", Applied Surface Science, 255(2):473-476(2008). https://doi.org/10.1016/j.apsusc.2008.06.060
  13. Yin S., Wang Y., Ren L., Zhao L., Kuang T., Chen H., and Qu J., "Surface modification of fluorosilicone acrylate RGP contact lens via low-temperature argon plasma", Applied Surface Science, 255:483-485(2008). https://doi.org/10.1016/j.apsusc.2008.06.059
  14. Shin H. S., Jang J. K., Kwon Y. S., and Mah K. J., "Surface modification of rigid gas permeable contact lens treated", J. Korean Physical Society, 55(6):2436-2440(2009). https://doi.org/10.3938/jkps.55.2436
  15. 장준규, 신형섭, "불화규소 아크릴레이트 RGP 콘택트렌즈의 플라즈마 표면처리 효과", 한국안광학회지, 15(3):207-212(2010).
  16. Power K. H., "These are not your father's RGPs". Eyewitness, First Quarter:1-4(2000). Available from: URL: http://www.clsa.info/PDF/IQ 00P4-8.pdf.
  17. Brki E., "USAN-Klassierung der Kontaktlinsenmaterialien (ISO 18369-1)", Augenrzte Thun und Umgebung, Berne, pp. 1-5(2008).
  18. "C&B RGP렌즈", (주)씨엔비코퍼레이션. Available from: URL: http://www.candb.co.kr/Lens/Lens_0201.htm.
  19. "Product 제품소개", 매니텍 코리아. Available from: URL: http://www.menicon.co.kr/.
  20. "About product: RGP", (주)베스콘. Available from: URL: http://www.bescon.co.kr/02pro/pro_04.asp.
  21. "제품소개: RGP Lens", Dreamcon. Available from: URL: http://www.dreamcontact.co.kr/.
  22. "Product info : RGP Lens", Interojo. Available from: URL: http://www.interojo.com/02/0205.php.
  23. "제품소개: 하드콘택트렌즈(RGP)". (주)우전메디칼. Available from:http://www.wjm.co.kr/ver2/product/product3_01.asp.
  24. "ECC RGP Lens", (주)로이즈. Available from: URL: http://www.loeys.co.kr/ecc_rgplens1.html.
  25. "Neon RGP", 시리스케이. Available from: URL: http://neonlens.com/product/product01.asp.
  26. "RGP Lens", (주)해피비젼. Available from: URL: http://www.happyvision.co.kr/lens/lens.asp.
  27. "Professional fitting guide: Paflufocon A, B, C, D", Paragon vision science. Available from: URL: www.paragonvision.com/documents/FP%20FG%20ZQF010004E-0506.pdf.
  28. Fakes D., Newton J. M., and Thomas T. R., ''The physical characterization of contact lens surfaces by means of surface profilometry", Clinical Materials, 1:109-115(1986). https://doi.org/10.1016/S0267-6605(86)80043-9
  29. "Menicon EX : lens 표면의 특수처리", 매니텍 코리아 (2010). Available from: URL: http://menicon.co.kr/product_01.htm.
  30. Kim D. K. and Lee S. B., "Comparison of surface properties of random, block, and graft copolymers having perfluoroalkyl and silicone-containing side chains", J. of Colloid and Interface Science. 247(2):490-493(2002). https://doi.org/10.1006/jcis.2001.8049
  31. Prado L. A. S. A., Sfora M. L., de Oliveira A. G., and Yoshida I. V. P., "Poly (dimethylsiloxane) networks modified with poly(phenylsilsesquioxane)s: Synthesis, structural characterization and evaluation of the thermal stability and gas permeabilily", European Polymer J., 44:3080-3086(2008). https://doi.org/10.1016/j.eurpolymj.2008.07.002
  32. Salamone J. C., and Kunzler J. F., "Gas-permeable materials and medical devices", U.S. Patent 7576159 B2, 2009.
  33. "Contact lens materials: material safety data sheet", Bausch & Lomb, New York, (2007).
  34. Kim M. S., Khang G., and Lee H. B., "Gradient polymer surfaces for biomedical applications", Progress in Polymer Science. 33:138-164(2008). https://doi.org/10.1016/j.progpolymsci.2007.06.001
  35. Nagasaki Y., Hashimoto Y., Kato M., and Kimijima T., "Gas permeation properties of organosilicon-containing polystyrenes", J. Membrane Science, 110(1):91-97(1996). https://doi.org/10.1016/0376-7388(95)00236-7
  36. "Product guide: boston materials & solutions", Bausch & Lomb, New York, (2009). Available from: URL: http://www.bausch.com/en_US/downloads/ecp/visioncare/BostonProductGuide_NA.pdf.
  37. West A. R., "Solid State Chemistry", 2nd Ed., John Wiley & Sons, West Sussex, pp. 90-95(1999).
  38. 한국과학기술정보원, "실리콘 폴리머", 이룸출판사, 서울, pp. 14-19(2002).
  39. Bodas D., and Khan-Malek C., "Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment - An SEM investigation", Sensors and Actuators B., 123:368-373(2007). https://doi.org/10.1016/j.snb.2006.08.037