• Title/Summary/Keyword: 탄소성변형

Search Result 344, Processing Time 0.032 seconds

Thermal behavior of modified silicon surface by $CHF_3/C_2F_6$ reactive ion etching ($CHF_3/C_2F_6$ 반응성이온 건식식각에 의해 변형된 실리콘 표면의 열적 거동에 관한 연구)

  • Park, Hyung-Ho;Kwon, Kwang-Ho;Koak, Byong-Hwa;Lee, Joong-Whan;Lee, Soo-Min;Kwon, Oh-Joon;Kim, Bo-Woo;Seong, Yeong-Gwon
    • Korean Journal of Materials Research
    • /
    • v.2 no.1
    • /
    • pp.35-42
    • /
    • 1992
  • Thermal behavior of residue and damaged layer formed by reactive ion etching (RIE) in $CHF_3/C_2F_6$ were investigated using X-ray photoelectron spectroscopy(XPS) and secondary ion mass spec-trometry(SIMS) techniques. Decomposition of polymer residue film begins at $200^{\circ}C$ and above $400^{\circ}C$ carbon compound as graphite mainly forms by in-situ resistive heating. It reveals that thermal decomposition of residue can be completed by rapid thermal anneal treatment above $800^{\circ}C$ under nitrogen atmosphere and out-diffusion of carbon and fluorine of damaged layer is observed.

  • PDF

Flexural Strength of Composite HSB Hybrid Girders in Positive Moment (HSB 강재 적용 강합성 복합단면 거더 정모멘트부의 휨저항강도)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.385-395
    • /
    • 2011
  • The flexural strength of composite HSB hybrid I-girders under positive moment is investigated by the moment-curvature analysis method to evaluate the applicability of the current AASHTO LRFD design specification to such girders. The hybrid girders are assumed to have the top flange and the web fabricated from HSB600 steel and the bottom flange made of HSB800 steel. More than 6,200-composite I-girder sections that satisfy the section proportion limits of AASHTOL RFD specifications are generatedby the random sampling technique to consider a statistically meaningful wide range of section properties. The flexural capacities of the sections are calculated by the nonlinear moment-curvature analysis in which the HSB600 and HSB800 steels are modeled as an elastoplastic, strain-hardening material and the concrete as CEB-FIP model. The effects of ductility ratio and compressive strength of concrete slab on the flexural strength of composite hybrid girders make of HSB steels are analyzed. Numerical results indicated that the current AASHTO-LRFD equation can be used to calculate the flexural strength of composite hybrid girders fabricated from HSB steel.

Seismic Capacity of Non-seismic Designed RC Framed Building Retrofitted by CBD System (CBD 시스템으로 보강된 비내진 RC 골조의 내진성능 평가)

  • Hur, Moo-Won;Lee, Sang-Hyun;Chun, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.625-632
    • /
    • 2015
  • In this study, a comparative analysis have been conducted to examine seismic reinforcement effect of a school building that is designed with a CBD (Channel Beam Damper) system supported by H-frame with existing non-seismic RC frame. As a result of experiment, seismic reinforcement specimen with CBD system showed hysteretic characteristics of a large ellipse with great energy dissipation ability and increased strength and stiffness, while non-seismic design specimen showed rapid reduction in strength and brittle shear failure at top and bottom of the left and right column. In addition, comparing the stiffness reduction between the two specimens, CBD system was effective in preventing the reduction of stiffness. Energy dissipation ability of specimen reinforced by CBD system was about 4.0 times higher than the non-reinforced specimen. Such enhancement in energy dissipation ability could be considered as the result of improved strength and deformation for further application in designing of seismic reinforcement.

A Numerical Approach to Young's Modulus Evaluation by Conical Indenter with Finite Tip-Radius (유한선단반경을 갖는 원뿔형 압입자에 의한 영률평가 수치접근법)

  • Lee, Jin-Haeng;Kim, Deok-Hoon;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.1
    • /
    • pp.35-42
    • /
    • 2008
  • Instrumented sharp indentation test is a well-directed method to measure hardness and elastic modulus. The sharp indenter such as Berkovich and conical indenters have a geometrical self-similarity in theory, but the self-similarity ceases to work in practice due to inevitable indenter tip-blunting. In this study we analyzed the load-depth curves of conical indenter with finite tip-radius via finite element method. Using the numerical regression data obtained from Kick's law, we first confirmed that loading curvature is significantly affected by tip radius as well as material properties. We then established a new method to evaluate Young's modulus, which successfully provides the value of elastic modulus with an average error of less than 2%, regardless of tip-radius and material properties of both indenter and specimen.

An Analysis of Axisymmetric Deep Drawing by the Energy Method (에너지법에 의한 축대칭 디프드로잉의 해석)

  • 양동열;이항수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.51-61
    • /
    • 1993
  • A systematic approach of the energy method is proposed for analysis of axisymmetric deep drawing in which the total deforming region is divided into five sections by the geometric characteristic. The corresponding solution is found through optimization of the total energy dissipation with respect to some parameters assumed in the kinematically admissible velocity field defined over each region. The sheet blank is divided into three-or five-layers to consider the bending effect. For the evaluation of frictional energy, it is assumed that the blank holding force acts on the outer rim of the flange and that the contact pressure acting on punch shoulder or die shoulder has uniform distributions, respectively. The computed results by the present method are compared with the experiment and the computed results by the elastic-plastic finite element method for the distribution of thickness strain and the relation between the punch stroke and punch load. The results for the case of multi-layers show better agreements than for the case of a single layer in load vs. stroke relation and strain distribution. It is thus shown that the multi-layer technique can be effectively employed in analyzing axisymmetric deep drawing in connection with the energy method.

Effects of MWCNT type and flow type on the electrical conductivity of polycarbonate/MWCNT nanocomposites (MWCNT종류와 유동 형태가 폴리카보네이트/MWCNT 나노복합체의 전기전도도에 미치는 영향)

  • Bui, Duc Nhat;Son, Younggon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.13-19
    • /
    • 2018
  • Effects of multiwall carbon nanotube (MWCNT) type and flow type (shear and elongational flow) on the electrical conductivity of polycarbonate (PC)/ MWCNT nanocomposites were investigated. Two different MWCNTs produced a huge difference in electrical conductivity in an injection molded PC/MWCNT nanocomposite. It was observed that MWCNTs having a higher aspect ratio provide much lower electrical conductivity in injection molded PC/MWCNT nanocomposites while the conductivities of compression molded samples from two different MWCNTs were the same. We found that this is due to a difference in the deformability of the two MWCNTs. As the aspect ratio of the MWCNT increases, the orientation of MWCNT by the external force becomes easier and the conductive path diminishes. Consequently the conductivity of the nanocomposites decreases. Nanocomposite samples prepared at a higher extensional rate and shear rate showed lower electrical conductivity. This is also attributed to the flow induced orientation and reduced conductive path of the MWCNTs. The experimental results were discussed in relation to variation in the tube-tube contact due to the change of the MWCNT orientation.

그래핀 투명전도막의 전기적 특성에 미치는 Strain 영향

  • Lee, Byeong-Ju;Jeong, Gu-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.462-462
    • /
    • 2011
  • 그래핀은 탄소원자로 구성된 원자단위 두께의 매우 얇은 2차원의 나노재료로서 높은 투광도 뿐만 아니라 우수한 기계적, 전기적 특성을 지니며 구조적 화학적 으로도 매우 안정한 것으로 알려져 있다. 이러한 그래핀을 얻는 방법에는 물리·화학적 박리법, 탄화규소의 흑연화, 열화학기 상증착법(thermal chemical vapor deposition; TCVD)등 많은 방법들이 존재한다. 이중 TCVD방법이 대면적으로 두께균일도가 높은 그래핀을 얻는데 가장 적합한 방법으로 알려져 있다. 한편 그래핀은 우수한 특성들을 기반으로 센서나 메모리와 같은 기능성 소자로 응용이 가능할 뿐 아니라 투명고분자 기판으로 전사함으로서 유연성 투명전극을 제작 가능하여 기존의 인듐산화물(indium tin oxide; ITO) 투명전극을 대체하여 디스플레이, 터치스크린, 전·자기 차폐재 등의 다양한 분야로의 응용이 가능하다고 예측되고 있다. 본 연구에서는 TCVD법을 이용하여 대면적으로 두께균일도가 높은 그래핀을 합성하여 투명 고분자 기판(polyethylene terephthalate; PET) 위에 전사하여 투명전도막을 제작한 후, 압축변형률(compressive strain)의 변화에 따른 전기적 특성 변화를 측정하였다. 그래핀은 300 nm 두께의 니켈박막이 증착된 산화물 실리콘 기판위에 원료가스로 메탄(CH4)을 사용하여 합성하였다. 합성 결과 단층 그래핀의 면적은 약 80% 이상이었으며, 합성된 그래핀은 분석의 용이함 및 향후 다양한 응용을 위하여 식각공정을 통해 산화막 실리콘 기판과 PET기판으로 전사하였다. PET기판 위로 전사하여 제작한 그래핀 투명전도막의 strain 인가에 따른 전기적 특성을 관찰한 결과, 약 20%의 비교적 높은 strain하에서도 전기적특성이 크게 변화하지 않는 것을 확인하였다. 그래핀의 특성분석을 위해서는 광학현미경, 라만 분광기, 투과전자현미경, 자외 및 가시선 분광광도계, 4탐침측정기 등을 이용하였다.

  • PDF

Numerical Simulation of Dynamic Soil-pile-structure Interaction in Liquefiable Sand (액상화 가능한 지반에 근입된 지반-말뚝-구조물 동적 상호작용의 수치 모델링)

  • Kwon, Sun-Yong;Yoo, Min-Taek;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.29-38
    • /
    • 2018
  • Three-dimensional continuum modeling of dynamic soil-pile-structure interaction embedded in a liquefiable sand was carried out. Finn model which can model liquefaction behavior using effective stress method was adopted to simulate development of pore water pressure according to shear deformation of soil directly in real time. Finn model was incorporated into Non-linear elastic, Mohr-Coulomb plastic model. Calibration of proposed modeling method was performed by comparing the results with those of the centrifuge tests performed by Wilson (1998). Excess pore pressure ratio, pile bending moment, pile head displacement-time history according to depth calculated by numerical analysis agreed reasonably well with the test results. Validation of the proposed modeling method was later performed using another test case, and good agreement between the computed and measured values was observed.

Strength Analysis of Double Bottom Structures in Stranding by Idealized Structural Unit Method (이상화(理想化) 구조요소법(構造要素法)에 의한 좌초시(坐礁時) 이중저(二重底) 구조(構造)의 손상 및 강도(强度) 해석(解析))

  • Jeom-K. Paik;Chang-Y. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.1
    • /
    • pp.125-138
    • /
    • 1991
  • In this paper, an efficient method for the analysis of damage and strength of double bottom structure in stranding is described by using idealized structural unit method. Also a procedure for the determination of the effective double bottom height which is required in order to protect the inner-bottom plate is proposed. In the comparison between the present solution and he existing experimental and numerical results in stranding, its observed that the present method gives reasonable results requiring very shorts computiong times. The present method is then applied to the double bottom structure of 40K product oil carrier which is designed by the double skin design concept as an example. By performing the series of analysis, the influence of vertical member space, plate thickness and double bottom height on the energy absorption capacity of the double bottom structure in stranding is investigated. Also the minimum double bottom height with varying each design variable Is calculated based on the above result.

  • PDF

A Study on Failure Mode of Pipe Elbows with Wall Thinning (두께 감소된 배관 엘보우의 파손 모드에 대한 연구)

  • Shin, Kyu-In;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.2
    • /
    • pp.57-62
    • /
    • 2008
  • Difference of failure modes was studied by finite element analysis for elbows with local wall thinning area particularly at inner surface of intrados of the elbow. Longitudinal wall thinning length, minimum thickness were kept constant but circumferential wall thinning width was varied to get $90^{\circ}$, $180^{\circ}$ and $360^{\circ}$ thinning width. Elastic-plastic analysis were carried out under the combined loading conditions of internal pressure and in-plane bending moment closing the elbow. Von Mises stress were obtained from the outer surface central surface location in intrados, extrados and crown parts in elbow. The results showed that the plastic deformation and failure started from the crown location when the thinning width small ($90{\sim}180^{\circ}$). However, plastic collapse started from the intrados location when the thinning width is approaching $360^{\circ}C$. This should be reflected to assess structural integrity of elbows after wall thinning measurement is made.

  • PDF