DOI QR코드

DOI QR Code

Effects of MWCNT type and flow type on the electrical conductivity of polycarbonate/MWCNT nanocomposites

MWCNT종류와 유동 형태가 폴리카보네이트/MWCNT 나노복합체의 전기전도도에 미치는 영향

  • Bui, Duc Nhat (Division of Advanced Materials Science and Engineering, College of Engineering, Kongju National University) ;
  • Son, Younggon (Division of Advanced Materials Science and Engineering, College of Engineering, Kongju National University)
  • Received : 2018.03.27
  • Accepted : 2018.09.07
  • Published : 2018.09.30

Abstract

Effects of multiwall carbon nanotube (MWCNT) type and flow type (shear and elongational flow) on the electrical conductivity of polycarbonate (PC)/ MWCNT nanocomposites were investigated. Two different MWCNTs produced a huge difference in electrical conductivity in an injection molded PC/MWCNT nanocomposite. It was observed that MWCNTs having a higher aspect ratio provide much lower electrical conductivity in injection molded PC/MWCNT nanocomposites while the conductivities of compression molded samples from two different MWCNTs were the same. We found that this is due to a difference in the deformability of the two MWCNTs. As the aspect ratio of the MWCNT increases, the orientation of MWCNT by the external force becomes easier and the conductive path diminishes. Consequently the conductivity of the nanocomposites decreases. Nanocomposite samples prepared at a higher extensional rate and shear rate showed lower electrical conductivity. This is also attributed to the flow induced orientation and reduced conductive path of the MWCNTs. The experimental results were discussed in relation to variation in the tube-tube contact due to the change of the MWCNT orientation.

MWCNT (다중벽 탄소 나노튜브)의 종류와 유동 형태가 폴리카보네이트 (PC)/MWCNT 나노 복합체의 전기 전도도에 미치는 영향을 관찰하였다. MWCNT의 종류가 바뀌면 사출 성형으로 제조된 PC/MWCNT의 전기 전도도가 크게 변하는 것을 관찰하였다. MWCNT 의 종횡비가 클수록 사출 성형품의 전기 전도도는 낮았고 압축 성형으로 제조한 시료의 전기 전도도는 MWCNT의 종류에 상관없이 비슷하였다. 이 결과는 MWCNT의 변형과 크게 상관있는 것으로 조사되었다. 종횡비가 클수록 외부 응력이 작용할 때 MWCNT의 배향도가 올라가고 MWCNT들의 접촉에 의한 전도성 길 (path)가 끊어져서 전기전도도가 낮아지는 것으로 생각된다. 연신력과 전단 속도가 큰 조건에서 제조된 시료의 전기 전도도가 크게 낮아지는 것을 관찰하였다. 이는 높은 전단력과 연신력에서 MWCNT의 배향이 높아지고 그 결과 MWCNT 들의 접촉이 단절되면서 전기 전도도가 낮아지는 것임을 다양한 실험으로 부터 알 수 있었다. 여러 실험 결과 들을 MWCNT의 배향과 전도길 변화와의 연관성의 관점으로 토의하였다.

Keywords

References

  1. W. Bauhofer, J. Z. Kovacs, "A Review and Analysis of Electrical Percolation in Carbon Nanotube Polymer Composites," Comp. Sci. Tech. Vol. 69, No. 10, pp. 1486-1498, 2009. https://doi.org/10.1016/j.compscitech.2008.06.018
  2. P. Potschke, M. Abdel-Goada, I.A.S. Dudkinb, D. Lellingerb, "Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites," Polymer, Vol. 45, No. 26, pp. 8863-8870, 2004. https://doi.org/10.1016/j.polymer.2004.10.040
  3. S. Subramoney, “Novel nanocarbons-structure, properties, and potential applications,” Adv. Mater., Vol. 10, No. 15, pp. 1157-1171, 1998. https://doi.org/10.1002/(SICI)1521-4095(199810)10:15<1157::AID-ADMA1157>3.0.CO;2-N
  4. J. P. Salvetat, G. A. D. Briggs, J. M. Bonard, R. R.Bacsa, A. J. Kulik, T. Stockli, N.A. Burnham, L. Forro, “Elastic and shear moduli of single-walled carbon nanotube ropes,” Phys. Rev. Lett., Vol. 82, No. 5, pp. 944-947, 1999. https://doi.org/10.1103/PhysRevLett.82.944
  5. S. Geetha, K. K. S. Kumar, C. R. K. Rao, M. Vijayan, D. C. Trivedi, "EMI shielding: Methods and materials - A review," J. Appl. Polym. Sci., Vol. 112, No. 4, pp. 2073-2086, 2009. https://doi.org/10.1002/app.29812
  6. M. Taya, "Electronic Composites: Modeling, Characterization, Processing, and MEMS Applications. Cambridge University Press; Ch. 6 Percolation model pp. 173-191, 2005.
  7. S. Abbasi, P. J. Carreau, A. Derdouri, "Flow induced orientation of multiwalled carbon nanotubes in polycarbonate nanocomposites: Rheology, conductivity and mechanical properties," Polymer, Vol. 51, No. 4, pp. 922-935, 2010. https://doi.org/10.1016/j.polymer.2009.12.041
  8. S. B. Kharchenko, J. F. Douglas, J. Obrzut, E. A. Grulke, K. B. Migler, "Flow-induced properties of nanotube-filled polymer materials," Nature Materials, Vol. 3, pp. 564 -568, 2004. https://doi.org/10.1038/nmat1183
  9. P. Potschke, H. Brunig, A. Janke, D. Fischer, D. Jehnichen, "Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning," Polymer, Vol. 46, No. 23, pp. 10355-10363, 2005. https://doi.org/10.1016/j.polymer.2005.07.106
  10. T. Villmow, S. Pegel, P. Potschke, U. Wagenknecht, "Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes," Comp. Sci. Tech., Vol. 68, pp. 777-789, 2008. https://doi.org/10.1016/j.compscitech.2007.08.031
  11. B. Krause, T. Villmow, R. Boldt, M. Mende, G. Petzold, P. Potschke, “Influence of dry grinding in a ball mill on the length of multiwalled carbon nanotubes and their dispersion and percolation behaviour in melt mixed polycarbonate composites,” Comp. Sci. Tech., Vol. 71, No. 8, pp. 1145-1153, 2011. https://doi.org/10.1016/j.compscitech.2011.04.004
  12. G. Lim, K. Min, G. Kim, "Effect of cooling rate on the surface resistivity of polymer/multi-walled carbon nanotube nanocomposites." Polym. Eng. Sci., Vol. 50, No. 2, pp. 290-294, 2010. https://doi.org/10.1002/pen.21537
  13. B. Krause. R. Boldt. P. Potschke. "A method for determination of length distributions of multiwalled carbon nanotubes before and after melt processing," Carbon, Vol. 49, No. 4, pp. 1243-1247, 2011. https://doi.org/10.1016/j.carbon.2010.11.042
  14. B. Krause, M. Mende, P. Potschke, G. Petzold. "Dispersability and particle size distribution of CNTs in an aqueous surfactant dispersion as a function of ultrasonic treatment time," Carbon, Vol. 48, No. 10, pp. 2746-2754, 2010. https://doi.org/10.1016/j.carbon.2010.04.002
  15. L. Jianzhong, Z. Weifeng, Y. Zhaosheng, “Numerical research on the orientation distribution of fibers immersed in laminar and turbulent pipe flows,” J. Aerosol Science, Vol. 35, No. 1, pp. 63-82, 2004. https://doi.org/10.1016/S0021-8502(03)00388-4