• Title/Summary/Keyword: 탄소섬유강화플라스틱 재료

Search Result 70, Processing Time 0.027 seconds

A Study on the Vibration Characteristics of Laminated Composite Materials Rectangular Plates (적층 복합재료 사각판의 진동특성에 관한 연구)

  • 허동현;신귀수;정인성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.486-490
    • /
    • 1997
  • Composite materials have varios complicated characteristics to the ply materials, ply orientations, ply stacking sequences and boundary conditions. Therefore, it is difficult to analysis composite materials. For efficient use of composite materials in engineering applications the dynamic behavior, that is, natural frequencies, nodal patterns should be informed. This study presents the experimental and FEM results for the free vibration of symmetrically and antisymmetrically laminated composite and hybrid composite rectangular plates. In order to demonstrate the validity of the experiment, FEM analysis using ANSYS was performed and natural frequencies experimentally obtined is compared with that calculated by FEM analysis. The results obtained from both experiment and FEM analysis show a good agreement.

  • PDF

Evaluation of Compressive Residual Strength in Composite Material Under Impact Damage (충격 손상을 받은 항공기용 복합재료의 압축잔류강도 평가)

  • Ahn, Sang Soo;Hong, Suk Woo;Koo, Jae Mean;Seok, Chang Sung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.503-509
    • /
    • 2013
  • Carbon fiber reinforced plastics (CFRPs), a composite material, are generally vulnerable to compressive load and impact damage in a direction perpendicular to the surface of the material. In particular, during the operation of an aircraft, impact damages caused by bird collisions or falling tools reduce the strength of the aircraft structure. In this study, after impact damages were applied to CFRP specimens with various impact energies and impactor diameters, the compressive residual strength of the impact-damaged specimen was evaluated by performing a compression test. Furthermore, a prediction model for the compressive residual strength is proposed according to the variation in the impact energy by comparing the test results.

Self-Diagnosis for Fracture Prediction of Concrete Reinforced by New Type Rib CFGFRP Rod and CF Sheet (신형 리브재 CFGFRP 보강근 및 CF 보강시트로 보강된 콘크리트의 파괴예측 자가진단)

  • Park, Seok-Kyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2007
  • For investigating self-diagnosis applicability, a method based on monitoring the changes in the electrical resistance of carbon fiber reinforced concrete has been tested. Then after examining change in the value of electrical resistance at each flexural weight-stage of carbon fiber in CFGFRP (carbon fiber and glass fiber reinforcing plastic) with new type rib and carbon sheet for concrete reinforcing, the correlations of electrical resistance and load as a function of strain, deflection were analyzed. As the results, it is clarified that when carbon fiber rod, rib and sheet fracture, the electrical resistance of it increase largely, and specially in case of CFGFRP, afterwards glass fiber tows can be resist the load due to the presence of the hybrid (carbon and glass) reinforced fiber. Therefore, it can be recognized that reinforcing bar and new type rib of CFGFRP and sheet of CF could be applied for self-diagnosis of fracture in reinforced FRP concrete.

Electrochemical Characteristics of CFX Based Lithium Primary Batteries Produced by Carbon Fiber Reinforced Plastic -Derived Waste Carbon Fibers (탄소섬유강화플라스틱 유래 폐 탄소섬유로 제조된 불화탄소 기반 리튬일차전지의 전기화학적 특성)

  • Naeun Ha;Chaehun Lim;Seongmin Ha;Seongjae Myeong;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.5
    • /
    • pp.515-521
    • /
    • 2023
  • In this study, waste carbon fiber obtained by pyrolysis of carbon fiber reinforced plastic (CFRP) was used to produce carbon fluoride through vapor phase fluorination and recycled as a reducing electrode material for lithium primary batteries. First, the physicochemical properties of the waste carbon fiber obtained by pyrolysis were determined, and the structural and chemical properties of carbon fluoride were analyzed to evaluate the effect of vapor phase fluorination on the waste carbon fiber. XRD analysis confirmed that the hexagonal network carbon laminated structure (002 peak) of the waste carbon fiber was gradually converted into a carbon fluoride structure (CFX, 001 peak) as the temperature of gas phase fluorination increased. The discharge capacity of the lithium primary battery produced using this carbon fluoride was up to 862 mAh/g. This was compared to the discharge capacity of carbon fluoride-based Li-ion batteries made of other carbon materials. These results suggest that carbon fluoride made from waste CFRP-based carbon fibers can be used as a reducing electrode material for Li-ion batteries.

Optimum Conditions for Improvement of Mechanical and Interfacial Properties of Thermal Treated Pine/CFRP Composites (열처리된 Pine/탄소섬유 복합재료의 기계적 및 계면물성 향상을 위한 최적 조건)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Park, Ha-Seung;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.4
    • /
    • pp.241-246
    • /
    • 2017
  • The brittle nature in most FRP composites is accompanying other forms of energy absorption mechanisms such as fibre-matrix interface debonding and ply delamination. It could play an important role on the energy absorption capability of composite structures. To solve the brittle nature, the adhesion between pines and composites was studied. Thermal treated pines were attached on carbon fiber reinforced polymer (CFRP) by epoxy adhesives. To find the optimum condition of thermal treatment for pine, two different thermal treatments at 160 and $200^{\circ}C$ were compared to the neat case. To evaluate mechanical and interfacial properties of pines and pine/CFRP composites, tensile, lap shear and Izod test were carried out. The bonding force of pine grains was measured by tensile test at transverse direction and the elastic wave from fracture of pines was analyzed. The mechanical, interfacial properties and bonding force at $160^{\circ}C$ treated pine were highest due to the reinforced effect of pine. However, excessive thermal treatment resulted in the degradation of hemicellulose and leads to the deterioration in mechanical and interfacial properties.

Analysis and Experiment on Dynamic Characteristics for Deployable Composite Reflector Antenna (전개형 복합재료 반사판 안테나의 동특성 분석 및 시험)

  • Chae, Seungho;Roh, Jin-Ho;Lee, Soo-Yong;Jung, Hwa-Young;Lee, Jae-Eun;Park, Sung-Woo
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.94-101
    • /
    • 2019
  • The dynamic characteristics of the composite reflector panels are numerically and experimentally investigated. A dynamics model of the panel is analytically developed based on a deployment mechanism of the antenna. The deployment is passively activated using elastic energy of a spring with two rotational degrees of freedom. Using the flexible multi-body dynamic analysis ADAMS, dynamic behavior of the panels such as velocities, deformations, as well as reaction forces during the deployment, are investigated in the gravity and zero-gravity cases. The reflector panel is manufactured using carbon fiber reinforced plastics (CFRPs) and its deployment characteristics are experimentally observed using a zero-gravity deployment test. The impact response and vibration problems that occur during deployment of the antenna panel have been identified and reliably deployed using dampers.

Evaluation of the Impact Behavior of Inline Disk Wheel Made of Carbon Fiber Reinforced Composites (탄소섬유 강화 복합재로 구성된 인라인 디스크 휠의 충격거동 평가)

  • Kwon, Hye-In;Lee, Sang-Jin;Shin, Kwang-Bok
    • Composites Research
    • /
    • v.29 no.2
    • /
    • pp.73-78
    • /
    • 2016
  • In this paper, The concept of a wheel with carbon fiber composite is to replace the conventional material used for a wheel hub, such as plastic, with a disk-type hub made of carbon fabric and epoxy resin. The impact load from the ground under real conditions was considered; a low-velocity impact test was conducted to evaluate the impact performance of the carbon wheel and compare it with that of a conventional plastic wheel. This study applied a 70 J impact load as a test condition. The impact energy was controlled in the test by adjustment of height and weight of impactor. The use of a carbon disk wheel hub was confirmed to reduce weight and generate an excellent repulsive force at low energy under conditions similar to real driving conditions. The results showed that the maximum load increased proportionally depending on the impact load, but the growth of the maximum load was reduced at a 20 J impact load and tended to decrease at a 45 J impact load. The carbon wheel showed excellent properties ; the level of rebounding was 35.3% and 19.1% of the total impact energy at impact loads of 5 J and 10 J, respectively. On the other hand, the carbon disk wheel rebounded less than 5% of the total energy due to crack generation of the thin carbon hub for impact loads of more than 20 J.

The Characteristics of Flexure Strength and Rigidity in Light-weight CFRP Members (경량화 CFRP 부재의 휨 강도와 강성 특성)

  • Yang, In-Young;Kim, Jung-Ho;Kim, Ji-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.11
    • /
    • pp.95-99
    • /
    • 2008
  • Applications of composite materials in various engineering fields have been extended significantly. For being useful composite materials, we could modify the rigidity and strength characteristics of composite material according to structures and material direction. In this study, CFRP, which has been widely used in space leisure and general structural applications due to the weight, elasticity coefficient, high fatigue strength and lower thermal transformation ect, was selected. As the CFRP is an anisotropic material whose mechanical properties change with its stacking sequence or angle, special attention was given to the effects of the fiber orientation angle on the bending characteristics of CFRP fiat and CFEP square members. It's different on the each result of strength and rigidity of CFRP flat and CFRP square members.

A Study on the drilling CFRP composites laminates with respect to drill materials (드릴재질에 따른 복합재료의 가공에 관한 연구)

  • 정성택;박종남;김선진;김정호;조규재
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.300-303
    • /
    • 2002
  • In recent days the more use of CFRP composite is in the airplane, and sport goods, etc., the mote necessity of research on it in this engineering. In this research, the CFRP composite specimen are fabricated by 48 CFRP plies with 6 orientation angles. and the specimens are drilled with 4tools The results are analyzed with consideration of cutting force, type of tools and fabrication condition. The specimens with each drilling conditions are also investigated with SEM. The optimal drilling conditions such as drill types and cutting force with respect to the fabricating condition are studied.

  • PDF

Fracture Characteristic of Double Cantilever Beam Specimen Using Lightweight Material at Sliding Mode (미끄러짐 모드에서의 경량 재료를 이용한 이중외팔보 시험편의 파손 특성)

  • Kim, Jae-Won;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.16-23
    • /
    • 2021
  • The fracture characteristic of the bonded interface under the application of a sliding load to a double cantilevered specimen manufactured using lightweight material was examined. Inhomogeneously bonded materials such as Al6061-T6, CFRP, and CFRP-Al were employed. In the experiment, the specimen was loaded on both directions by applying a shearing load to the bonding interface. The experimentally obtained stress, specific strength and energy release rate values were examined. CFRP exhibited excellent specific strength. The experimental results demonstrated that the inhomogeneous bonded material CFRP-Al exhibited an overall high performance in comparison with the single materials.