DOI QR코드

DOI QR Code

Evaluation of the Impact Behavior of Inline Disk Wheel Made of Carbon Fiber Reinforced Composites

탄소섬유 강화 복합재로 구성된 인라인 디스크 휠의 충격거동 평가

  • Kwon, Hye-In (Korea Textile Machinery Research Institute(KOTMI), Carbon Fiber Team) ;
  • Lee, Sang-Jin (Korea Textile Machinery Research Institute(KOTMI), Carbon Fiber Team) ;
  • Shin, Kwang-Bok (Department of Mechanical Engineering, Hanbat University)
  • Received : 2016.01.03
  • Accepted : 2016.04.29
  • Published : 2016.04.30

Abstract

In this paper, The concept of a wheel with carbon fiber composite is to replace the conventional material used for a wheel hub, such as plastic, with a disk-type hub made of carbon fabric and epoxy resin. The impact load from the ground under real conditions was considered; a low-velocity impact test was conducted to evaluate the impact performance of the carbon wheel and compare it with that of a conventional plastic wheel. This study applied a 70 J impact load as a test condition. The impact energy was controlled in the test by adjustment of height and weight of impactor. The use of a carbon disk wheel hub was confirmed to reduce weight and generate an excellent repulsive force at low energy under conditions similar to real driving conditions. The results showed that the maximum load increased proportionally depending on the impact load, but the growth of the maximum load was reduced at a 20 J impact load and tended to decrease at a 45 J impact load. The carbon wheel showed excellent properties ; the level of rebounding was 35.3% and 19.1% of the total impact energy at impact loads of 5 J and 10 J, respectively. On the other hand, the carbon disk wheel rebounded less than 5% of the total energy due to crack generation of the thin carbon hub for impact loads of more than 20 J.

본 연구에서 다루는 탄소섬유 복합재 인라인 휠은 플라스틱 인라인 휠 허브의 기존 재질을 탄소섬유 직물/에폭시 수지로 구성된 디스크 형의 허브로 대체하는 것이다. 지면으로부터의 충격 하중은 탄소섬유 복합재 휠의 충격 성능 평가를 위해 저속 충격 시험이 수행되었고, 기존의 플라스틱 휠의 성능과 비교하여 수행되었다. 본 연구는 시험 조건으로 70 J의 충격 하중을 적용하였다. 충격 에너지는 타격 추의 높이와 무게를 조정하여 조절되었다. 탄소섬유 복합재 디스크 허브의 사용은 무게를 절감하고 실제 운행 조건과 유사한 조건인 낮은 충격에너지에서 우수한 반발력을 나타내는 것으로 확인되었다. 충격 하중에 따라 최대 하중은 비례적으로 증가하지만, 최대 하중의 성장은 20 J 충격 하중에서 감소되었고, 45 J 충격 하중에서부터 감소되는 경향의 결과를 보였다. 탄소섬유 복합재 휠은 5 J, 10 J의 충격 하중에서 전체 충격 에너지의 35.3, 19.1%가 리바운딩 되는 우수한 특성을 보였다. 반면에 20 J 이상의 충격하중에 대해서는 얇은 탄소섬유 복합재 허브의 크랙 생성으로 인해 전체 에너지의 5% 이하로 리바운드 되었다.

Keywords

References

  1. Kim, W.-D. and Hong, D.-J., "Design of an Aircraft Composite Window Frame Using VaRTM Process", J. Korean Society for Composite Materials, Vol. 19, No. 6, 2006, pp. 1-7.
  2. Shin, K.-B., Ko, H.-Y., and Cho, S.-H., "A Study on Crashworthiness and Rollover Characteristics of Low-Floor Bus made of Honeycomb Sandwich Composites", J. Korean Society for Composite Materials, Vol. 21, No. 1, 2008, pp. 22-29.
  3. Kim, J.-S., Jeong, J.-C., and Lee, S.-J., "An Experimental Study on the Hybrid Composite Carbody Structure", J. Korean Society for Composite Materials, Vol. 18, No. 6, 2005, pp. 19-25.
  4. Kim, M.-S., Han, D.-C., Kim, S.-J., and Lee, W.-I., "Optimization of Stacking Sequence for Composite Golf Club Shafts", J. Korean Society for Composite Materials, Vol. 20, No. 1, 2007, pp. 1-7.
  5. Lee, B.S., "Design and Manufacture of CFRP Pipe for Bicycle Frame", J. Korean Society of Precision Engineering, Vol. 20, No. 6, 2003, pp. 130-137.
  6. Cheong, S.K., Kang, K.W., and Jeong, S.K., "Evaluation of the Mechanical Performance of Golf Shafts", Engineering Failure Analysis, Vol. 13, 2006, pp. 464-473. https://doi.org/10.1016/j.engfailanal.2004.12.035
  7. Lessar B. Larry, James A. Memes and Patrick L. Lizotte, "Utilization of FEA in the Design of Composite Bicycle Frames", Composites, Vol. 26, No. 1, 1995, pp. 72-74. https://doi.org/10.1016/0010-4361(94)P3633-C
  8. Cesin Atas and Onur Sayman, "An Overall View on Impact Response of Woven Fabric Composite Plate", Composite Structure, Vol. 82, 2008, pp. 336-345. https://doi.org/10.1016/j.compstruct.2007.01.014
  9. Cesin Atas and Dahsin Liu, "Impact Response of Woven Composites with Small Weaving Angles", International Journal of Impact Engineering, Vol. 35, 2008, pp. 80-97. https://doi.org/10.1016/j.ijimpeng.2006.12.004