• Title/Summary/Keyword: 탄성고무 마운트

Search Result 13, Processing Time 0.023 seconds

Optimal Mounts Design for a Rotation Machine on a Flexible Plate (평판지지 회전기계의 최적마운트 설계)

  • Kim, Joon-Yeop;Lee, Si-Bok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.38-47
    • /
    • 1989
  • The optimal mounting system for reciprocating comperssor supported on a flexible is designed. Four short hollow rubber cylinders are used as mounting pads, and so the thickness, diameter, height and location of the rubber mounts are considered as design parameters. The optimal mounts parameters which give the smallest force transmittance, are obtained by Constrained Rosenbrock Method.

  • PDF

Design and Analysis of Automotive Engine Mount (자동차 엔진마운트의 설계해석)

  • Cho, Jae-Ung;Kim, Yeong-In;Kim, Sei-Hwan
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05b
    • /
    • pp.673-675
    • /
    • 2011
  • 고무는 소재의 탄성 회복 능력과 감쇄 능력, 수밀성의 우수성으로 인해 여러 기계산업의 부품으로 사용되어 지고, 자동차 부품으로는 마운트와 범퍼 등의 충격해소를 위하여 설계되어지고 있다. 본 논문에서는 승차감에 영향을 주는 내부 소음 및 진동의 원인인 엔진의 떨림현상을 감쇄시키기 위한 부품인, 엔진마운트의 고무 모형을 CATIA 프로그램을 사용하여 모델링하였고, ANSYS 12.0 프로그램으로 진동과 하중을 주어 변화량을 측정하여 상용차에 맞는 엔진마운트의 최적설계를 방향을 제시하였다.

  • PDF

Stress analysis and fatigue failure of rubber in automobile (자동차용 고무재의 응력해석 및 피로파손)

  • 이강용;백운천
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.11-15
    • /
    • 1990
  • 고무재료는 강재에 비해 큰 탄성변형을 할 수 있고 충격 흡수능력이 뛰어나므로 자동차에서도 진동문제 및 승차감을 향상시키기 위하여 엔진 마운트, suspension bushing등을 비롯한 여러 곳에 사용되고 있다. 여기에 이용되는 고무재의 요구조건은 1) 피로수명이 충분히 길것, 2) 열 및 산화에 강할 것, 3) 소음이 없을 것 등이다. 본 고에서는 1)번의 요구조건을 기준으로 고무재의 기본적인 역학적 특성 및 해석방법을 소개하고자 한다.

  • PDF

Definition and Verification of the Dynamic Characteristics of the Anti-Vibration Mount for the Numerical Analysis (수치해석을 위한 방진 마운트의 동적 특성 결정 및 검증)

  • Han, Hyung-Suk;Park, Mi-Yoo;Cho, Heung-Gi;Kim, Joong-Gil;Im, Dong-Been
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3190-3195
    • /
    • 2010
  • Because the non-linear property of the rubber, the elastic modulus and damping factor of the rubber mount are dependent on the frequency. Therefore, the dynamic properties of the rubber mount should be considered when the anti-vibration mount is designed. Especially, when the numerical analysis is performed, the results can have much errors not considering the dynamic characteristics of the rubber mount. In this paper, the dynamic properties of typical standard rubber mount approved by ROK navy are defined experimentally and the results from the numerical analysis and experiment are compared for considering and non-considering the dynamic properties of the rubber mount respectively.

Non-linear Large Deformation Analysis of Elastic Rubber Mount (고무 재질 탄성 마운트의 비선형 대변형 거동 해석)

  • Nho, In-Sik;Kim, Jong-Man;Kwak, Jeong-Seok
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.186-191
    • /
    • 2008
  • A lot of equipments installed in ships must be isolated for relaxing the shock, vibration and noise using the elastic mounts. Most of the elastic mounts are made of the rubber, however it is not easy to design the effective rubber mount. Because, in general, the rubber has a non-linear constitutive characteristics especially for a large deformation. So, there are many difficulties to estimate the accurate structural response of rubber which is the basis of the shape design of the mounts. In this study, the detailed non-linear viscoelastic large deformation finite element analysis method was dealt with. And to verify validity of the present analysis scheme, the results were compared with experiments.

Optimal Design of the 4-cylinder Engine Rubber Mounts with Elastic Vibrations of Vehicle Body (차체의 탄성진동을 고려한 4기통 엔진 고무마운트의 최적설계)

  • 박철희;오진우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.1
    • /
    • pp.163-181
    • /
    • 1998
  • In this study, the objective is determine the optimal design variable of engine mount system using the rubber mount of bush-type which is usually utilized in passive control to minimize vibrations of vehicle body or transmission from engine into body. The engine model adopted in this study is 4-cylinder, 4-stroke gasoline engine support- ed by 4-points. The system is modelled in 10 d.o.f.-rigid body motion of the engine & transmission in 6 d.o.f., elastic motion of vehicle body in 4 d.o.f.(1st torsional, 1st vertical and 1st & 2nd lateral bending vibration mode). To consider the elastic motion of vehicle body, find the eigenvalues and mode shapes of vehicle body by nodal testing and then determine the modal masses and stiffnesses of the body. The design variables of the engine mount system are locations, stiffness and damping coefficients of the rubber mounts(28 design variables). In case of considering the torque-roll axis for the engine, the design variables of the mount system are reduced to 22 design variables. The objective functions in optimal design process are considered by three cases, that is, 1) transmitted forces through engine mounts, 2) acceleration components of generalized coordinates for the vibration of vehicle body, 3) acceleration of specified location(where gear box) of body. three case are analyzed and compared with each other.

  • PDF

Vibration Control of a Beam Structure Using Hybrid Mounts (하이브리드 마운트를 이용한 빔구조물의 진동제어)

  • Kim, Seung-Hwan;Hong, Sung-Ryong;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.440-445
    • /
    • 2002
  • A hybrid mount featuring elastic rubber and piezoelectric material is devised and applied to the vibration control of a beam structure. The governing equation of the beam structure associated with the hybrid mount is derived. Subsequently, a robust sliding mode controller is designed to attenuate the vibration of the beam structure due to external excitation. The controller is then simulated and control responses such as displacement and transmitted force are evaluated in time and frequency domains.

  • PDF

Active Vibration Control of a Beam Structure Using Hybrid Mount (하이브리드마운트를 이용한 빔 구조물의 능동진동제어)

  • 김승환;홍성룡;최승복
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.7
    • /
    • pp.524-531
    • /
    • 2003
  • This paper presents an active vibration control of a flexible beam structure using a hybrid mount which consists of elastic rubber and Piezoelectric material. After identifying stiffness and damping properties of the rubber and piezoelectric elements, a mechanical model of the hybrid mount is established. The mount model is then Incorporated into the beam structure, and the governing equation of motion is obtained in a state space. A sliding mode controller is designed in order to actively attenuate the vibration of the beam structure subjected to high frequency and small magnitude excitations. The controller is experimentally realized and control responses such as acceleration of the beam structure and force transmission through the hybrid mount are evaluated. In addition. a comparative work is done between the passive and hybrid mount systems.

A Design Criterion for the Vibration of a Marine Diesel Generator Set (선박용 디젤발전기의 진동 절연을 위한 설계 기준)

  • Lee, D.C.;Brennan, M.J.;Mace, B.R.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.648-655
    • /
    • 2005
  • The resilient mounts of a diesel engine installed onboard a ship should be designed for both static and dynamic loads. If possible, the resonance frequencies of the six rigid body modes of the installation and the flexible modes of the engine support structure should not lie within the engine operation range. In this paper a design criterion is proposed to evaluate an isolation system which involves the summation of dynamic forces transmitted through the resilient mounts and elastic potential energy index stored in the mounts. A case study is also presented in which a diesel engine generator, which had an elastic foundation and was mounted in a 5500 TEU container vessel, was studied both theoretically and experimentally. The theoretical analysis of the test model was performed by using a single mass 6 degree of freedom system. Actual measurements of mechanical vibration of the Engine and its foundation onboard were carried out, which showed the importance of including the flexibility of the engine support structure in the mode

  • PDF

A Design Criterion for the Vibration Isolation of a Marine Diesel Generator Set (선박용 디젤발전기의 진동 절연을 위한 설계 기준)

  • Brennan M.J.;Mace B.R.;Lee, D.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.4 s.109
    • /
    • pp.329-338
    • /
    • 2006
  • The resilient mounts of a diesel engine installed onboard a ship should be designed for both static and dynamic loads. If possible, the resonance frequencies of the six rigid body modes of the installation and the flexible modes of the engine support structure should not lie within the engine operation range. In this paper a design criterion is proposed to evaluate an isolation system which involves the summation of dynamic forces transmitted through the resilient mounts and elastic potential energy index stored in the mounts. A case study is also presented in which a diesel engine generator, which had an elastic foundation and was mounted in a 5500 TEU container vessel, was studied both theoretically and experimentally. The theoretical analysis of the test model was performed by using a single mass 6 degree of freedom system. Actual measurements of mechanical vibration of the engine and its foundation onboard were carried out, which showed the importance of including the flexibility of the engine support structure in the mode.