• 제목/요약/키워드: 타이타늄 합금

검색결과 88건 처리시간 0.023초

선박용 과급기 타이타늄합금 압축기휠의 열간단조 공정설계 (Hot Forging Design of Titanium Compressor Wheel for a Marine Turbocharger)

  • 염종택;나영상;임정숙;김정한;홍재근;박노광
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.354-360
    • /
    • 2009
  • Hot-forging process and die design were made for a large-scale compressor wheel of Ti-6Al-4V alloy by using the results of 2-D FEM simulation. The design integrated the geometry-controlled approach and the processing contour map based on the dynamic materials model and the flow stability criteria. In order to obtain the processing contour map of Ti-6Al-4V alloy, compression tests were carried out in the temperature range of $915^{\circ}C$ to $1015^{\circ}C$ and the strain rate range of $10^{-3}s^{-1}$ to $10s^{-1}$. In the die design of the compressor wheel using the rigid-plastic FEM simulation, forging dimensional accuracy, the capacity of the forging machine and defect-free forging were considered as main design factors. The microstructure of hot forged wheel using the designed die showed a typical alpha-beta structure without forging-defects.

플라즈마 이온 확산법에 의해 타이타늄 합금 표면층에 형성된 TiC층에 관한 연구 (Surface Characteristics of TiC Layer Formed on Ti Alloys by Plasma Ion Carburizing)

  • 이도재;최답천;양현삼;정현영;배대성;이경구
    • 한국주조공학회지
    • /
    • 제27권4호
    • /
    • pp.179-183
    • /
    • 2007
  • The TiC layer was formed on Ti and Ti alloys by plasma carburizing method. The main experimental parameters for plasma car boozing were temperature and time. XRD, EDX, hardness test and corrosion test were employed to analyze the evolution and material properties of the layer. The preferred orientation of TiC layers is (220) at treated temperature of $700^{\circ}C\;and\;880^{\circ}C$ However, it is changed to (200) at temperature of $800^{\circ}C$ The thickness of carbide layer increase with increasing carburizing temperature. Highest hardness of hardened layer formed on CP-Ti was obtained at the carburizing condition of processing temperature $880^{\circ}C$ and processing time 1080min. The corrosion potential of carburizing specimen was higher than untreated CP-titanium, and corrosion potential increased as carburizing temperature and time increased. Thus the corrosion resistance of CP-Ti was greatly enhanced after plasma carburizing treatment.

두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸 (Wear of UHMWPE Pins Against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions)

  • 이권용;김석영;김신윤
    • Tribology and Lubricants
    • /
    • 제18권2호
    • /
    • pp.167-172
    • /
    • 2002
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, fur the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steef discs.

타이타늄 합금 분말의 열적산화를 통한 TiO2 나노와이어의 합성 (Synthesis of TiO2 Nanowires by Thermal Oxidation of Titanium Alloy Powder)

  • 김유영;조권구
    • 한국분말재료학회지
    • /
    • 제25권1호
    • /
    • pp.48-53
    • /
    • 2018
  • One-dimensional rutile $TiO_2$ is an important inorganic compound with applicability in sensors, solar cells, and Li-based batteries. However, conventional synthesis methods for $TiO_2$ nanowires are complicated and entail risks of environmental contamination. In this work, we report the growth of $TiO_2$ nanowires on a Ti alloy powder (Ti-6wt%Al-4wt%V, Ti64) using simple thermal oxidation under a limited supply of $O_2$. The optimum condition for $TiO_2$ nanowire synthesis is studied for variables including temperature, time, and pressure. $TiO_2$ nanowires of ${\sim}5{\mu}m$ in length and 100 nm in thickness are richly synthesized under the optimum condition with single-crystalline rutile phases. The formation of $TiO_2$ nanowires is greatly influenced by synthesis temperature and pressure. The synthesized $TiO_2$ nanowires are characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM).

순수 타이타늄 기반 산화물분산강화 합금의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of Oxide Dispersion Strengthened alloy Based on Commercially Pure Titanium)

  • 박태성;김정한
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.327-330
    • /
    • 2018
  • This study is conducted as a preliminary research to verify the feasibility of Ti-based Oxide dispersion strengthened (ODS) alloy. Pure-Ti powder is mixed with $Y_2O_3$ powder and subsequently, mechanically alloyed at $-150^{\circ}C$. The Ti-based ODS powder is hot-isostatically pressed and subsequently hot-rolled for recrystallization. The microstructure consists of elongated grains and Y excess fine particles. The oxide particle size is larger than that of the typical Fe-based ODS steel. Tensile test shows that the tensile ductility is approximately 25%, while the strength is significantly higher than that of pure Ti. The high-temperature hardness of the Ti-ODS alloy is also significantly higher than that of pure Ti at all temperatures, while being lower than that of Ti-6Al-4V. The dimple structure is well developed, and no evidence of cleavage fracture surface is observed in the fracture surface of the tensile specimen.

타이타늄 합금에서 산소발생전위 지연이 부동태 피막 특성과 국부부식 저항성에 미치는 영향 (Effect of Delayed Oxygen Evolution in Anodic Polarization on the Passive Film Characteristic and Localized Corrosion Resistance of Titanium Alloys)

  • 오유수;서동일;이재봉
    • Corrosion Science and Technology
    • /
    • 제19권3호
    • /
    • pp.156-162
    • /
    • 2020
  • The objective of this study was to investigate delayed oxygen evolution and localized corrosion resistance of titanium alloys by performing potentiodynamic polarization, potentiostatic polarization, and Mott-Schottky measurements. Delayed oxygen evolution was compared among titanium alloys, 316 stainless steel, and platinum. Difference in delayed oxygen evolution between titanium alloys and other metals was attributed to specific surface characteristic of each metal. Delayed oxygen evolution of titanium alloys resulted from the predominant process of ionic conduction over electronic conduction. The effect of oxygen evolution on localized corrosion of titanium alloys was investigated using electrochemical critical localized corrosion temperature (E-CLCT) technique. Mott-Schottky measurement was performed to clarify the difference in film properties between titanium alloys and stainless steels. Titanium alloys were found to have much lower donor density than stainless steels by 1/28. These results indicate that delayed oxygen evolution has little influence on the concreteness of passive film and the resistance to localized corrosion of titanium alloys.

두가지 기구운동을 하는 타이타늄 합금과 스테인레스 스틸 디스크에 대한 초고분자량 폴리에틸렌 핀의 마멸 (Wear of UHMWPE Pins against Ti-alloy and Stainless Steel Disks Moving in Two Kinematic Motions)

  • 이권용;김석영;김신윤
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.67-71
    • /
    • 2000
  • The wear behaviors of ultrahigh molecular weight polyethylene pins against titanium alloy and stainless steel disks moving in two different kinematic motion were investigated by conducting repeat pass rotational sliding and linear reciprocal sliding wear tests. Linear reciprocal motion wore more the polyethylene pin than did repeat pass rotational motion for both disk materials. It means that the repeated directional change of contact stresses generates more wear debris in polyethylene. For the linear reciprocal sliding tests, titanium alloy disks were damaged with some scratches after one million cycles but no surface damage was observed on the polyethylene pins. On the other hand, for the repeat pass rotational sliding tests, all titanium alloy disks were severely abraded on the entire region of sliding track. This phenomenon can be interpreted by that stress fatigue under repeated sliding contact initiated titanium oxide layer wear particles from disk surface, and these hard particles were embedded into polyethylene pin and then they severely abraded the disk surface. From these results it can be concluded that the kinematic motion in pin-on-disk wear tests play a crucial role on the wear behaviors of UHMWPE pins against titanium alloy and stainless steel disks.

  • PDF

Al 합금 다이캐스팅 용 타이타늄 기지 복합재료 슬리브의 내용손성 및 내마모성 평가 (Endurance in Al Alloy Melts and Wear Resistance of Titanium Matrix Composite Shot-Sleeve for Aluminum Alloy Die-casting)

  • 최봉재;성시영;김영직
    • 대한금속재료학회지
    • /
    • 제50권2호
    • /
    • pp.176-182
    • /
    • 2012
  • The main purpose of this study was to evaluate the endurance against Al alloy melts and wear resistance of an in-situ synthesized titanium matrix composite (TMC) sleeve for aluminum alloy die-casting. The conventional die-casting shot sleeve material was STD61 tool steel. TMCs have great thermal stability, wear and oxidation resistance. The in-situ reaction between Ti and $B_4C$ leads to two kinds of thermodynamically stable reinforcements, such as TiBw and TiCp. To evaluate the feasibility of the application to a TMCs diecasting shot sleeve, the interfacial reaction behavior was examined between Al alloys melts with TMCs and STD61 tool steel. The pin-on-disk type dry sliding wear test was also investigated for TMCs and STD61 tool steel.

타이타늄 합금 분말 형상 및 치밀화 기구에 따른 미세조직 및 기계적 물성 영향 연구 (Effects of Powder Shape and Densification Mechanism on the Microstructures and Mechanical Properties of Ti-6Al-4V Components)

  • 김영무;권영삼;송영범;이성호
    • 한국분말재료학회지
    • /
    • 제26권4호
    • /
    • pp.311-318
    • /
    • 2019
  • The objective of this study is to investigate the influence of powder shape and densification mechanism on the microstructure and mechanical properties of Ti-6Al-4V components. BE powders are uniaxially and isostatically pressed, and PA ones are injection molded because of their high strengths. The isostatically compacted samples exhibit a density of 80%, which is higher than those of other samples, because hydrostatic compression can lead to higher strain hardening. Owing to the higher green density, the density of BE-CS (97%) is found to be as high as that of other samples (BE-DS (95%) and P-S (94%)). Furthermore, we have found that BE powders can be consolidated by sintering densification and chemical homogenization, whereas PA ones can be consolidated only by simple densification. After sintering, BE-CS and P-S are hot isostatically pressed and BE-DS is hot forged to remove residual pores in the sintered samples. Apparent microstructural evolution is not observed in BE-CSH and P-SH. Moreover, BE-DSF exhibits significantly fine grains and high density of low-angle grain boundaries. Thus, these microstructures provide Ti-6Al-4V components with enhanced mechanical properties (tensile strength of 1179 MPa).

DV-Xα 분자 궤도법을 이용한 고강도 타이타늄 합금 설계 (A Study on the Design of High-Stength Titanium Alloys Using DV-Xα Molecular Orbital Method)

  • 백민숙;윤동주;원대희;김병일
    • 대한금속재료학회지
    • /
    • 제49권9호
    • /
    • pp.739-745
    • /
    • 2011
  • Beta-type alloys are the most versatile class of titanium alloys. They offer the highest strength to weight ratios and very attractive combinations of strength, toughness, and fatigue resistance inlarge cross sections [1]. The present study was made to obtain useful information for the design of ${\beta}$-type titanium alloys with high-strength properties by using the $DV-X{\alpha}$ method. Employing two calculated parameters, the bond order (Bo) and the d-orbital energy level (Md) of alloying elements in ${\beta}$-type titanium alloy was introduced and used for prediction of mechanical properties. Thus, high-strength titanium alloys were designed by calculating the Md and Bo values of the previous and present titanium alloys.