• Title/Summary/Keyword: 타원형 격자 생성 방법

Search Result 4, Processing Time 0.025 seconds

Structured Surface Grid Generation on Body Surfaces defined by NURBS (NURBS로 정의된 표면상에서의 정렬격자 생성 기법)

  • Kim Byoungsoo;Lee Eun-Hee
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.144-151
    • /
    • 2001
  • NURBS 곡면식으로 정의된 물체 표면상에서 표면 정렬 격자를 생성할 수 있는 방법을 소개하였다. 공학 응용분야에서의 물체 표면 정의는 여러 개의 패치들로 표현되는 것이 일반적이고, 여기서 소개하는 표면격자 생성기법은 이러한 여러 패치들에 걸쳐서 분포되는 정렬격자를 쉽게 생성할 수 있도록 한다 이 기법은 매개변수 형태의 타원형 격자생성 방정식의 해를 구하되, 여러 NURBS 패치에 걸쳐서 투영/분포된 초기 격자계를 타원형 방정식 반복계산 과정의 매개변수형 표면 정의식으로 임시 활용한다. 매개변수형 타원형 방정식의 해가 얻어지고 나면, 그 결과 격자계를 다시 NURBS 패치에 투영을 시키고 타원형 방정식의 해를 구하는 과정이 반복된다. 이러한 반복과정이 전체적으로 수렴이 이루어질 때까지 반복된다. 이 방법에 의해서 얻어지는 표면 정렬 격자계들은 타원형 격자생성기법의 특징인 완만성을 가지면서 정의된 물체표면에서 벗어나지 않는 격자점들이 된다. 소개된 방법은 간단하면서도 하나의 NURBS 곡면만이 아니라 여러 개의 NURBS 곡면에 걸쳐있는 정렬격자계를 효율적으로 생성할 수 있도록 해주며, 그 기본적인 접근법은 NURBS 곡면식 만이 아니라 다른 형태의 매개변수형 형상 정의식에도 적용이 가능하다.

  • PDF

A Grid Generation Technique for the External Flow Fields Utilizing the Predictor-Corrector Scheme (Predictor-Corrector를 활용한 외부 유동장 격자 생성 기법)

  • Kim B. S.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.84-92
    • /
    • 1997
  • In this paper a new structured grid generation technique is introduced. This new technique utilizes predictor-corrector approach, and is a marching scheme in the global sense as the hyperbolic scheme is. In the predictor step, one layer of grid cells is obtained by using Modified Advancing Front Method which generates a collection of quadrilateral cells simultaneously. In the corrector step, the layer of grid cells that is calculated in the predictor step is adjusted by solving Laplace equations to prevent grid lines from skewing and overlapping in highly curved configurations. It is shown that the resultant algorithm, named a MAP scheme, which combines the Modified Advancing Front Method as a Predictor with an elliptic scheme as a corrector can be used to generate globally smooth and locally near-orthogonal grids for external flow fields even for highly curved configurations. Examples of grid generations for external flow fields about several configurations by use of the present approach are given, and its applicability and flexibility have been demonstrated and discussed.

  • PDF

Development of Computational Methods for Viscous Flow around a Commercial Ship Using Finite-Volume Methods (유한체적법을 이용한 상선주위의 난류유동 계산에 관한 연구)

  • Wu-Joan Kim;Do-Hyun Kim;Suak-Ho Van
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.19-30
    • /
    • 2000
  • A finite-volume method is developed to solve turbulent flows around modern commercial hull forms with bow and stern bulbs. The RANS equations are solved. The cell-centered finite-volume method employs QUICK and central difference scheme for convective and diffusive flux discretization, respectively. The SIMPLEC method is adopted for the velocity-pressure coupling. The developed numerical methods are applied to calculate turbulent flow around KRISO 3600TEU container ship. Surface meshes are generated into five blocks: bow and stern bulbs, overhang, fore and afterbody. 3-D field grid system with O-H topology is generated using elliptic grid generation method. Surface friction lines and wake distribution at propeller plane is compared with experiment. The calculated results show that the present method can be used to predict flow around a modern commercial hull forms with bulbs.

  • PDF

Development of 3-D Field Grid Generating Method for Viscous Flow Calculation around a Practical Hull Form (선체주위의 점성유동 계산을 위한 3차원 공간 격자계 생성방법)

  • Wu-Joan Kim;Do-Hyun Kim;Suak-Ho Van
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.1
    • /
    • pp.70-81
    • /
    • 1999
  • To predict the viscous boundary layers and wakes around a ship, the CFD techniques are commonly used. For the efficient application of CFD tools to practical hull farms, a 3-D field grid generating system is developed. The present grid generating system utilizes the solution of Poisson equation. Sorenson's method developed for 2-D is extended into 3-D to provide the forcing functions controling grid interval and orthogonality on hull surface, etc. The weighting function scheme is used for the discretization of the Poisson equation and the linear equations are solved by using MSIP salver. The trans-finite interpolation is also employed to assure the smooth transition into boundary surface grids. To rove the applicability, the field grid systems around a container ship and a VLCC with bow and stem bulb are illustrated, and the procedures for generating 3-D field grid system are explained.

  • PDF