• Title/Summary/Keyword: 타설높이

Search Result 47, Processing Time 0.025 seconds

A Study of the Thermal Analysis for the Crack Control of Underground Pier Footing (지하 교각 기초의 온도균열 제어를 위한 수화열 해석 연구)

  • Park, Weon-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.91-101
    • /
    • 2006
  • Lately, massive concrete structures are increasingly built. In such massive structures, the heat of hydration of mass concrete causes thermal cracks. To avoid thermal crack, methods widely acceptable for practical use are pre-cooling, pipe cooling and control of placing height. Thermal stress analysis is performed to find the way of controlling the thermal crack of pier footing mat in this paper. The footing mat model for the analysis is $12m{\times}14m$area and 3m height. The analysis results are compared with method of control of lift height and method of pipe cooling. The analysis results show that thermal crack can be removed by method of placing control and pipe cooling at footing mat placed on the ground.

Experimental Study on Lateral Pressure Characteristics of a Formwork for High-Flowable and High-Strength Concrete (고유동 고강도 콘크리트용 거푸집의 측압 특성에 관한 실험적 연구)

  • Ko, Young-Kon;Kim, Cheol-Hwan;Hwang, Jae-Woong;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.3
    • /
    • pp.130-138
    • /
    • 2015
  • In this study, to examine the application of cast-in-place of high-flowable and high-strength concrete, an experimental study on the lateral pressure of a formwork was preformed. The experiment specimens, which have different casting height and casting speed were prepared. The lateral pressure and the change of temperature from test specimens were obtained. The maximum lateral pressure was shown to lateral pressure of fresh concrete. Immediately after placing, the lateral pressure starts to decrease and, after 12 hours, it showed a stabilization. The decreased tend of the lateral pressure was similar with normal-strength concrete, which appears stabilization after 3~4 hours from casting completion. The more casting speed is fast, the more maximum lateral pressure is high, but pressure reduction with the lapse of time was nearly similar. In addition, it was found that there was no direct relation between the hydration heat and the lateral pressure reduction.

Analysis on Heat of Hydration for Height of Shell Concrete Pouring in Reactor Containment Building (원자로건물 외벽 타설 높이 산정을 위한 수화열 해석)

  • Kim, Jwa-Young;Park, Jong-Hyok;Lee, Han-Woo;Bang, Chang-Joon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.165-166
    • /
    • 2012
  • A thermal stresses by heat of hydration was analyzed according to a change of a pour height in reactor containment building. In case of more than 3.6m pouring height a crack index by heat of hydration analysis resulted in less than 1 because there is not a construction joint of vertical direction and for a self-restraint effect of circumferential section shape. Therefore detailed consideration on a mixture proportion of binder type, quantity in concrete and selection of a form in seasonal air temperature is needed for a control of tensile stress by heat of hydration.

  • PDF

Characteristics of Excess Water Dewatered Concrete Using Permeable Liner (투수시트를 적용하여 잉여수를 탈수한 콘크리트의 강도 특성)

  • Jeon, Kyu-Nam;An, Gi-Hong;Lee, Jong-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.675-682
    • /
    • 2013
  • In this study, to enhance the quality of concrete surface by removing the surplus water, permeable liner attached the euroform was applied for manufacturing concrete specimens. Various kinds of concrete mixtures with different water to binder ratios were applied and the strength properties of the hardened concrete surfaces were evaluated at different heights. Experimental results showed that the rebound values by schmidt hammer test and the compressive strengths on the surfaces of concrete specimens were increased as proportion to the amount of mixture water which is dependent on the water to binder ratio of each concrete mixture, and more enhancements were observed on the middle and lower specimen surfaces than the upper region. SEM analysis also showed that much denser hydrate structures were observed on the specimen surfaces by the application of the permeable liner while similar hydrate formations were occurred regardless of surface treatment conditions. From the MIP test results of the concrete surfaces, it was observed that, by the application of permeable liner, the pore volume below $0.01{\mu}m$ was decreased with a maximum of 50% resulting in the densification of pore structures.

Evaluation on the External Restraint Stress in Mass Concrete (매스콘크리트의 외부구속응력에 관한 검토)

  • 강석화;정한중;박칠림
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.5
    • /
    • pp.111-122
    • /
    • 1996
  • The effects of external restraint on the thermal stresses i n mass concrete are investigated through a series of parametric study. Two major factors affecting the degree of external restraint such as the ratio of length to height of the placed structure (L/H) and the elastic modulus of base structure ($E_r$) are employed as the parameters in a condition which a placing height H is 1.0m. Various conditions of I,/H and E, are analysed by a FEM program and the relationship between these two parameters is examined. The shape of stress distribution due to the external restraint is shown as linearity on the height direction of the section, and is influenced by L/H, $E_r$, and strength development of placed concrete. The external restraint can be devided by two part. One is an axial restraint and the other is a flexural restraint. When the level of external restraint is low, the structure behavior is mainly governed by flexural restraint, otherwise it is dependent on axial restraint. Comparing the calculated stress by the method of the ACI 207 committee with a finite element analysis, the fbrmer overestimates the external restraint stress when the degree of external restraint is weak, and underestimates when it is strong.

A Study on the Flowable Backfill with Waste Foundry Sand for Retaining Wall (유동특성을 이용한 폐주물사 혼합물의 옹벽뒷채움재 연구)

  • 조재윤;이관호;이인모
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.17-30
    • /
    • 2000
  • The objective of this study is to evaluate the lateral earth pressure and the stability of small scale retaining wall with waste foundry sand(WFS) mixtures as a controlled low strength materials (CLSM). Three different types of WFS, like Green WFS, Hurane WFS and Coated WFS, were used in this study, and fly ash of Class F type was adopted. To evaluate the lateral earth pressure and the stability of retaining wall, two different samll scale retaining wall tests, which are called an artificially controlled strain method and a natural strain method, were carried out. In case of an artificially controlled strain method, the coefficient of lateral earth pressure, just after backfilling of WF mixtures, was around 0.8 to 1.0, and most of earth pressure was dissipated within 12 hours. In case of a natural strain method, two steps of stage constructions were employed. The mixtures of Hurane WFS and Coated WFS showed fast decrease of earth pressure due to a relatively good drainage. Judging from the sta bility of retaining wall for overturning and sliding, two steps of stage construction for 2 days were enough to finish the backfill of 6-m height of retaining wall. Also, considering the curling effect of WFS mixtures, the stability of retaining wall increased as curling time increased.

  • PDF

Thermal Crack Control of Mass Concrete by Concrete Placing Height and Curing Method (매스콘크리트의 타설높이 및 양생조건에 따른 온도균열 저감 방안에 관한 연구)

  • 민병소;신길수;김대권;이현희;신성우;이광수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.369-376
    • /
    • 2001
  • As many studies have performed to reduce thermal cracking in mass concrete, it is already prepared against thermal cracking, we can find many plans against thermal cracking in several reference book. But it needs practical guidelines to be available in construction site. In this study to establish control method of thermal cracking in mass concrete, tests which have factors of placing thickness and curing method of concrete are performed.

  • PDF

Hydrate Heat Analysis for the Determination of Optimized Thickness in Mass Concrete (매스 콘크리트의 적정 타설높이 산정을 위한 수화열 해석)

  • 신성우;이광수;유석형;김선호;황동규;박기홍
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.385-390
    • /
    • 2001
  • The thermal crack in mass concrete is mainly due to the difference of concrete temperature, which is generated by hydration heat of cement. As the thickness of mat foundation increases, the difference of temperature becomes bigger. The purpose of this study is to estimate the optimum placing depth. The temperature of real mat foundation was observed and the thermal analysis by Finite Element Method was executed. Finally, the crack index according to the placing depth was estimated.

  • PDF

Full Scale Tests of Concrete Filled Steel Tube Column using High Fluidity Concrete (고유동 콘크리트를 이용한 콘크리트 충전강관 기둥의 실물대 시공실험)

  • Kim Ook-Jong;Lee Do-Bum
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.222-227
    • /
    • 2001
  • Full scale construction tests of CFT(concrete filled steel tube) column to solve construction problem and to confirm quality were performed in apartment site. To improve construction efficiency, the tests has been accomplished two stages after the tests for material mixing design had been completed. In the first stage, the experimental variables were the placing methods, existence of guiding pipe, placing velocity and drop height and the height of specimen were $3.6{\cal}m$. In the second stage, Filling steel tube of 9.6m height with concrete was performed by two ways, that is, the pump-up method and the dropping method. The filled condition of the concrete and concrete strength distribution according to the column height were checked and the quality of the CFT column was confirmed.

  • PDF

Development of Temperature Control Technology for Massive Machine Foundations (기계기초 매스콘크리트의 균열제어를 위한 온도관리기법의 개발)

  • Huh, Taik-Nyung;Son, Young-Hyun;Lee, Suck-Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.227-233
    • /
    • 2001
  • 최근 비약적인 경제발전에 힘입어 장대교량, 항만, 댐, 도로, 원자력 발전소 등과 같은 대규모 기간구조물의 건설이 증가하고 있으며, 구조물은 대형화 혹은 고강도화되는 추세에 있다. 특히, 전술한 구조물을 매스콘크리트로 가설하게 되면 초기재령시에 수화열로 인한 균열이 발생할 가능성이 매우 높기 때문에 효율적인 매스콘크리트의 개발과 매스콘크리트 구조물의 설계기술 및 시공방법이 중요한 연구대상으로 등장하게 된다. 본 논문에서는 가로 52.6m, 세로 14.4m, 높이 8.5m의 기계기초 매스콘크리트의 시공에 적합한 온도관리기법을 다음과 같은 단계로 제안하고자 한다. 먼저 온도상승요인을 최소화하는 콘크리트의 배합비를 산정한다. 산정된 콘크리트의 열특성을 측정하기 위해 단열온도실험을 수행하여 각종 열특성상수와 단열온도 상승곡선식을 도출한다. 이와 같은 열특성치를 콘크리트 구조체에 적용하여 열응력해석을 수행한다. 이와 같은 열응력해석을 통하여 구조물의 분할타설높이에 따라 온도균열이 발생하지 않는 콘크리트 내외부의 온도차를 결정한다. 이때 열응력해석에 범용 유한요소 프로그램인 Diana을 사용한다. 콘크리트의 타설은 현장조건과 타설시점을 최대로 고려하고 양생방법으로 콘크리트 내외부의 온도차를 최소화하기 위해 이중단열효과가 있는 거푸집과 가열장비을 사용한다. 또한 콘크리트의 온도관리를 위하여 구조물 내외부에 온도게이지를 매립하고 30분마다 계측을 수행하면서 콘크리트 내외부 온도차가 허용 해석범위를 유지하도록 한다. 양생기간은 7-10일 정도를 유지한다. 전술한 온도관리기법을 통하여 완공후 수평정밀도가 기초의 허용침하량으로 환산하여 $1{\mu}m$ 인 고정밀도의 기계기초는 완벽하게 시공되었다. 따라서 매스콘크리트의 온도균열을 제어할 수 있는 시공방법으로 제안한다. 또한 매스콘크리트의 내외부 온도차를 단열온도실험과 온도해석으로부터 정한 값이내로 제어하고 충분한 양생관리를 병행하면 수화열에 의한 콘크리트의 온도균열을 최소화할 수 있을 것으로 기대한다.

  • PDF